การศึกษาประสิทธิภาพของระบบการรองทางชีวภาพโดยใช้หูฟัง
เพื่อออดแคดเมียมในน้ำทะเลแสมะ

มินตราร คานิชลวุฒิ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของความสมบูรณ์ของการศึกษาตามหลักสูตร
ปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาเทคโนโลยีชีวภาพ
บัณฑิตวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้
พ.ศ. 2558

สิทธิ์ของมหาวิทยาลัยแม่โจ้
การศึกษาประสิทธิภาพของระบบการกระจายข้อมูลโดยใช้ผู้ เพื่อลดลดความเป็นน้ำใจของสังคม

มั่นคง คานิสสูญ

วิทยานิพนธ์นี้ได้รับการพิจารณาอนุมัติให้เป็นส่วนหนึ่งของความสมบูรณ์ของการศึกษาตามหลักสูตรปริญญาตรีทางภาษาบาลี

สาขาวิชาเทคโนโลยีชีวภาพ

อาจารย์ที่ปรึกษา

อาจารย์ที่ปรึกษา

อาจารย์ที่ปรึกษา

อาจารย์ที่ปรึกษา

อาจารย์ที่ปรึกษา

ร้อยตรี ทรงพลเอก คุณภูมิ จำนงค์

จ.ต.ส. 24 วันที่ 24 พฤศจิกายน 2558

บัณฑิตวิทยาลัยรอบแล้ว

ร้อยตรี ทรงพลเอก คุณภูมิ จำนงค์

จ.ต.ส. 24 วันที่ 24 พฤศจิกายน 2558

คณะวิทยาศาสตร์

ร้อยตรี ทรงพลเอก คุณภูมิ จำนงค์

จ.ต.ส. 24 วันที่ 24 พฤศจิกายน 2558
บทคัดย่อ

งานวิจัยชีวืมีถิ่นประกอบในการวิจัยเพื่อ 1) สั่งศึกษาคัดอภิภิภิภัยของหญ้าที่ใช้ในงานภูมิทัศน์
สำหรับการประยุกต์ใช้เป็นระบบกักเก็บและเก็บน้ำในสนาม 2) สั่งศึกษาประสิทธิภาพของหญ้าที่ใช้ใน
งานภูมิทัศน์ในการทำลายเคลื่อนย้ายออกจากนาในสนาม และ 3) สั่งศึกษาประสิทธิภาพของระบบเก็บน้ำ
และเก็บน้ำที่ทำเชิงวิชาการในการนำน้ำในสนาม ซึ่งในการศึกษาได้แบ่งการทดลองออก เป็น 2 การ
ทดลองโดยการทดลองแรกจะเป็นการคัดเลือกชนิดของหญ้าที่มีอยู่ในงานทางภูมิทัศน์ที่มี
ความสามารถในการทำลายเคลื่อนย้ายออกจากนาในสนามสืบเคราะห์ โดยใช้ระบบที่เป็นแบบโดยใช้ความ
เข้มข้นของเคลื่อนย้ายที่ 1 และ 3 มก./ล. ซึ่งหญ้าที่นำมาทำการทดลองได้แก่ หญ้าแฉวกเขียว (A.
compuressus P.Beauv) หญ้าแฉวกเขียว (Z. matrella (L.)Merrill.) และหญ้าเขียวนุ่น (Z. japonica)
และทำการทดลองเป็นระยะเวลา 15 วัน หลังจากนั้นจะทำการคัดเลือกหญ้าที่มีความสามารถในการ
สะสมเคลื่อนย้ายได้นักกี่สูงจากของการทดลองที่ 1 มาใช้ในการทดลองที่ 2 ซึ่งเป็นการใช้ผู้คัดเลือก
ระบบการทางเข้าถูกข้างประกอบเป็น 4 รุ่นต่างๆ ได้แก่ ระบบการทางเข้าถูกที่ไม่มีหญ้าและมี
หญ้าที่ต่างกันตัวอย่างน้ำของสั่งเคราะห์ที่ไม่มีเคลื่อนย้าย และระบบการทางเข้าถูกที่มีหญ้าและมีหญ้า
ซึ่งทำการด้วยน้ำของสั่งเคราะห์ที่มีเคลื่อนย้ายเข้าข้น 3 มก./ล. ในอีกการทดลอง 40 ลิตรต่อ 6
ชั่วโมง เป็นระยะเวลา 30 วัน

จากการทดลองที่ 1 พบว่าหญ้าที่มีความสามารถในการเพิ่มความสูงของยอดมากที่สุดทั้ง
ในการสะสมเคลื่อนย้ายเข้าข้น 1 และ 3 มก./ล. โดยมีค่าเท่ากับ 6.5±1.7 และ 5.1±0.6 มม. ตามลำดับ
และพบว่าเคลื่อนย้ายไม่ส่งผลต่อปริมาณเคลื่อนโยByPrimaryKeyของหญ้าที่ 3 ชนิด นอกจากนี้ยังพบว่าหญ้าที่มี
มีความสามารถในการสะสมเคลื่อนย้ายได้มากที่สุดทั้งในสาระลายเทคนิคเข้าข้น 1 และ 3 มก./ล.
โดยมีค่าเท่ากับ 597.19±2.29 และ 674.10±1.01 มก./กก. น้ำหนักแห้งตามลำดับ และอีกทั้งยังมี
ประสิทธิภาพในการกำจัดแคสเมียร์ออกจากสารละลายขนาดที่สูง โดยมีประสิทธิภาพในการกำจัดแคสเมียร์ที่สารละลายแคสเมียร์เข้มข้น 1 และ 3 มก./ลบ.ม. โดยมีค่าเท่ากับ 81.66±0.71 และ 70.14±0.26 เบอร์เช่นต่ำลงสุดใน ตั้งแต่หน้าผู้ป่วยสุนัขเลื่อนที่นำมาใช้ในการทดลองที่ 2

จากการศึกษาประสิทธิภาพของระบบกรองทางชีวภาพที่ 4 พบมีค่าค่าคงที่ต่ำลงสุดใน 25.47 และ 24.17 เบอร์เช่นต่ำลงสุดใน ผลข้างในและผลที่ได้จากการทำแบบทดสอบเท่ากับ 78.17 และ 75.43 เบอร์เช่นต่ำลงสุด สำหรับประสิทธิภาพในการกำจัดแคสเมียร์และอินทรีย์ในระบบกรองทางชีวภาพที่หน้าผู้ป่วยและไม่มีเหตุที่ใช้สารสรรพวิทยาในการกำจัดแคสเมียร์ไม่ต่างกัน โดยพบผลเพียงใน 1.14 มก./ลบ.ม. (ในน้ำแข็ง เลือก 0.87 มก./ลบ.ม.) และสามารถกำจัดหินหรือไม่ได้ในเวลานั้นที่เจ็บป่วย อย่างไรก็ตามระบบกรองทางชีวภาพที่หน้าผู้ป่วยที่ไม่มีหุ้นเลือกที่ไม่ใช่มีเหตุสามารถกำจัดแคสเมียร์ได้ในเวลานั้นที่เจ็บป่วย สามารถให้ได้ผลการดูดซับไวีย์ในชั้นกรองที่ขัดขัน ซึ่งในระบบกรองทางชีวภาพที่หน้าผู้ป่วยที่มีหุ้นเลือกจะถูกหุ้นเลือกจู่สุดไปในชั้นกรองที่ขัดขัน สามารถกำจัดแคสเมียร์ได้ในเวลานั้นที่เจ็บป่วย
Title
Studying the Performance of Bioretention Process Using Grass Species for Cadmium Removal from Synthetic Runoff

Author
Miss Mintra Khumnuengkrhuan

Degree of
Master of Science in Biotechnology

Advisory Committee Chairperson
Dr. Mujalin K. Pholchan

ABSTRACT

The aims of this study were 1) to study the potential of landscape grasses for the bioretention system treating the storm water runoff 2) to study the performance of landscape grasses in cadmium removal from storm water runoff and 3) to study the performance of bioretention system in treating the storm water runoff. There were 2 phases in this study. The first phase was the selection of 3 landscape grasses (A. comosaressus P.Beauv, Z. matrella (L.) Merrill and Z. Japonica) for cadmium removal from the synthetic storm water runoff using hydroponic system. Cadmium concentrations used in this study were 1 and 3 mg/l while the experimental period was 15 days. The best cadmium accumulator was selected to be used in the second phase. The second phase was divided into 4 treatments, the bioretention system without planted grass and watering with the synthetic storm water runoff without cadmium, the bioretention system with planted grass and watering with the synthetic storm water runoff without cadmium, the bioretention system without planted grass and watering with the synthetic storm water runoff with cadmium concentration of 3 mg/l and the bioretention system with planted grass and watering with the synthetic storm water runoff with cadmium concentration of 3 mg/l. The flow rate of the synthetic storm water runoff was 40 litter/ 6 hour/day and the experimental period was 30 days/treatment.
The result of the first phase was that the *Z. Japonica* had the highest increasing shoot height when testing with both cadmium concentrations (6.5±1.7 and 5.1±0.6 millimeter for 1 and 3 mg/l respectively). Furthermore cadmium did not affect the chlorophyll content from all 3 landscape grasses. In addition the *Z. Japonica* showed the highest cadmium accumulation efficiency for both cadmium concentrations which were 597.19±2.29 and 674.10±1.01 mg Cd/kg dry weight for 1 and 3 mg/l respectively. *Z. Japonica* showed to be the best in cadmium removal with the removal efficiency of 81.66±0.71 and 70.14±0.26 percentage for 1 and 3 mg/l respectively. Therefore *Z. Japonica* was selected and chosen in the second phase.

The result of the study in the performance of bioretention systems with 4 treatments showed that the bioretention system with planted grass had the highest treatment efficiency in terms of suspended solid removal and COD removal 85.47 and 78.17 percentage respectively. However, the efficiency of phosphate and organic nitrogen removal between the bioretention systems with planted grass and non planted grass were not different (the average of phosphate in the effluent of 0.14 mg/l). Although, the systems could eliminate all the organic nitrogen, high amounts of nitrate concentration had been found in the effluent. Furthermore, it was found that the bioretention system with both planted grass and non planted grass could eliminate all the cadmium by adsorption in the soil layer and in the grass tissue. Grasses in the bioretention system uptaked and accumulated the cadmium into the shoot and root tissue and interestingly the majority of cadmium accumulation was found in the root tissues. In addition, it was found that cadmium affected the grass growth. The grass that had been grown in the treatment with cadmium addition had lower shoot height than the one in the treatment without cadmium. However, cadmium did not have any effect on the chlorophyll content of the grass.
กิตติกรรมประกาศ

ข้าพเจ้าขอขอบพระคุณ อาจารย์ ดร.มูลสินทร สมจุฑา ประชานรัตนารามที่ปรึกษา ผู้ช่วยศาสตราจารย์ ดร.ปฏิญญา สุทธิภัณฑ์ และอาจารย์ ดร.ยุทธิ์ อันไพพร กรรมการที่ปรึกษา ที่ได้ให้ความรู้ คำปรึกษา คำแนะนำและสนับสนุนในเรื่องของอุปกรณ์ สารเคมีต่างๆ ที่ใช้ในการทำงานวิจัยในครั้งนี้ ตลอดจนให้คำแนะนำ ตรวจสอบแก้ไขข้อบกพร่องต่างๆ ของวิทยานิพนธ์ จนกระทั่งสำเร็จเป็นรูปแบบวิทยานิพนธ์ที่สมบูรณ์

ขอขอบพระคุณด้านงานคณะกรรมการการอุดมศึกษา (สก.) สำหรับการสนับสนุนเงินทุนในการวิจัยในครั้งนี้

ขอขอบพระคุณคณาจารย์ เจ้าหน้าที่ห้องปฏิบัติการ หลักสูตรเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยแม่ริنج ที่ได้ให้ความช่วยเหลือในการจัดหาความสะดวกในการใช้งานที่อุปกรณ์และเครื่องมือต่างๆ ที่ใช้ในการทำงานวิจัยนี้ ตลอดจนเพื่อนๆ ที่ๆ น้องๆ ที่คอยให้ความช่วยเหลือและเป็นกำลังใจในการทำวิทยานิพนธ์ครั้งนี้ให้สำเร็จลุล่วงไปได้ด้วยดี

สุดท้ายนี้ ข้าพเจ้าขอขอบพระคุณ คุณหยุดรุ่นทรัพ คำนึงความ คุณแม่สุธิมา คำนึงความ และญาติที่น้องพยานที่คอยให้การสนับสนุน ให้หนุนการศึกษา ตลอดจนการอบรมล้างสติและให้กำลังใจในการศึกษาและการทำงานวิทยานิพนธ์ในครั้งนี้เสมอมา

มีบัตร คำนึงความ
พุทธศักราช 2558
สารบัญ

บทคัดย่อ (3)
ABSTRACT (5)
กิตติกรรมประกาศ (7)
สารบัญ (8)
สารบัญตราจาร (10)
สารบัญภาพ (11)
สารบัญตารางงานแผนภูมิ (13)
สารบัญภาพแผนภูมิ (14)
อักษรย่อและสัญลักษณ์ (15)

บทที่ 1 บทนำ
ความสำคัญและที่มาของปัญหาที่ทำการวิจัย (1)
วัตถุประสงค์ของการวิจัย (1)
ประโยชน์ที่คาดว่าจะได้รับ (2)

บทที่ 2 บททวนเอกสาร
แหล่งข้อเท็จจริง (3)
ประโยชน์และความสำคัญของน้ำ (4)
素敵なน้ำ (4)
ปัญหาจากการใช้ทรัพยากรน้ำ (5)
ประเภทของแหล่งน้ำ (6)
การเปรียบเทียบของมลพิษในเดือนสุทธิแหล่งน้ำและมูลนิธิ (9)
คัดเมื่อ (11)
วิธีการวัดค่าโลหะหนัก (15)
ระบบักเก็บน้ำด้วยพืชพรรณ (Bioretention หรือ Rain gardens) (23)

บทที่ 3 ทฤษฎีและวิธีการวิจัย (25)
ขั้นตอนการวิจัย (25)
คุณสมบัติของน้ำในทวีปเอเชีย (29)
ตัวอย่างที่ใช้ในการทดลอง (30)
วิธีการเก็บตัวอย่าง
อุปกรณ์ เครื่องมือและสารเคมี
บทที่ 4 ผลและวิเคราะห์ผลการทดลอง
ผลการทดลองที่ 1 พยาชนะความสามารถในการละลายแคลเซียม
ของหัวใจ 3 ชนิด
ผลการทดลองที่ 2 ศึกษาประสิทธิภาพในการกำจัดแคลเซียม
ของระบบไหลของน้ำเพื่อช่วยในการกินหัวใจ
บทที่ 5 สรุปผลการวิจัย
ข้อเสนอแนะ
บรรณานุกรม
ภาคผนวก ก วิธีการเตรียมสารเคมีและวิธีวิเคราะห์
ภาคผนวก ข การแปลผลคุณสมบัติทางเคมีและกายภาพของสินค้า
ภาคผนวก ค ประวัตินักศึกษา
สารบัญตาราง

ตารางที่ หน้า
1 พิจารณาหลักหน้าและสารบรรยายคำรูปพิ่ง 5
2 มาตรฐานคุณภาพหน้าผังตีพิมพ์ 7
3 ปริมาณและหน้าที่จดหมายไปยังอังกฤษและภาษาไทยจากประเทศต่างๆ 13
4 ปริมาณและหน้าที่เป็นต้นฉบับต่างๆ 14
5 ปริมาณและหน้าที่พิมพ์ 14
6 ปริมาณและหน้าที่พิมพ์ในที่พิมพ์ที่ดูภายในตัวข้อที่มีการเป็นเป็น 15
7 ปริมาณและหน้าที่อยู่ในข้อที่มีการเป็นเป็น 19
8 สาระของทรัพมันต์ในการออกแบบที่ 1 26
9 ส่วนบนที่ไม่ได้ในหน้าต่อไป 27
10 ลักษณะของทรัพมันต์ในการออกแบบที่ 2 29
11 เครื่องมือและอุปกรณ์ที่ใช้ในการทดลอง 31
12 สารเคมีที่ใช้ในการทดลอง 32
13 แสดงสมบัติของบริษั totalCountที่ 2 และ 4 74
สารบัญภาพ

<table>
<thead>
<tr>
<th>ภาพที่</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>4 (ก)</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>11 (ก)</td>
<td>47</td>
</tr>
<tr>
<td>12 (ก)</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>51</td>
</tr>
<tr>
<td>15 (ก)</td>
<td>54</td>
</tr>
<tr>
<td>งานที่</td>
<td>หน้า</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>16</td>
<td>ปริมาณในโครงงานในบางขั้นตอนและออกจากกระบวนการซื้อวัสดุของ (ก) ทรัพย์มันที่ 1 (ข) ทรัพย์มันที่ 2 (ค) ทรัพย์มันที่ 3 และ (ง) ทรัพย์มันที่ 4</td>
</tr>
<tr>
<td></td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>ปริมาณในตารางในบางขั้นตอนและน้ำออกจากกระบวนการซื้อยาของ (ก) ทรัพย์มันที่ 1 (ข) ทรัพย์มันที่ 2 (ค) ทรัพย์มันที่ 3 และ (ง) ทรัพย์มันที่ 4</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td>18</td>
<td>ค่า pH ในน้ำขั้นตอนออกจากกระบวนการซื้อวัสดุของ (ก) ทรัพย์มันที่ 1 (ข) ทรัพย์มันที่ 2 (ค) ทรัพย์มันที่ 3 และ (ง) ทรัพย์มันที่ 4</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td>19</td>
<td>ค่า pH ในช่องก่อนและหลังการทดลองของทั้ง 4 ทรัพย์มัน</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
<tr>
<td>20</td>
<td>ค่าปริมาณความชุ่มในช่องก่อนและหลังการทดลองของทั้ง 4 ทรัพย์มัน</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td>21</td>
<td>ปริมาณในเครื่องในช่องก่อนและหลังการทดลองของทั้ง 4 ทรัพย์มัน</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>ปริมาณในโครงงานในช่องก่อนและหลังการทดลองของทั้ง 4 ทรัพย์มัน</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td>23</td>
<td>ปริมาณของสารที่เป็นประโยชน์ในเครื่องในช่องก่อนและหลังการทดลองของทั้ง 4 ทรัพย์มัน</td>
</tr>
<tr>
<td></td>
<td>67</td>
</tr>
<tr>
<td>24</td>
<td>ปริมาณอิมพัลส์ที่มีผลก่อนและหลังการทดลองของทั้ง 4 ทรัพย์มัน</td>
</tr>
<tr>
<td></td>
<td>69</td>
</tr>
<tr>
<td>25</td>
<td>ความสามารถในการแยกเป็นประโยชน์ในเครื่องก่อนและหลังการทดลองของทั้ง 4 ทรัพย์มัน</td>
</tr>
<tr>
<td></td>
<td>69</td>
</tr>
<tr>
<td>26</td>
<td>อัตราการเจริญเติบโตของหมาดในเครื่องในช่องที่ 2 และ 4</td>
</tr>
<tr>
<td></td>
<td>71</td>
</tr>
<tr>
<td>27</td>
<td>ปริมาณของสารที่มีผลก่อนและหลังการทดลองของทั้ง 2 และ 4</td>
</tr>
<tr>
<td></td>
<td>72</td>
</tr>
<tr>
<td>28</td>
<td>ปริมาณแอดมีนที่เกี่ยวข้องในกระบวนการซื้ยวัสดุของ (ก) ทรัพย์มันที่ 3 และ (ง) ทรัพย์มันที่ 4</td>
</tr>
<tr>
<td></td>
<td>74</td>
</tr>
</tbody>
</table>
สารบัญตารางภาคผนวก

ตารางภาคผนวกที่	หน้า
1 | การประเมินระดับความเป็นกรด-ด่าง (pH) 112
2 | การประเมินสมบัติทางเคมีของดิน 113
<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>หัว</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ตารางแสดงผลเม็ดเมล็ดที่ละนิ้วของเนื้อติด</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>หมายถึง</td>
<td>ชุดควบคุมไม่มีเหตุการณ์และไม่เสียผลตามเกณฑ์ในการทดลองที่ 1 สังเคราะห์ทางการทดลองที่ 1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ContCd0</td>
<td>หมายถึง</td>
<td>ชุดควบคุมไม่มีเหตุการณ์และผสมละลายเข้าในน้ำทะเลสังเคราะห์ที่ไม่เหมาะสม</td>
</tr>
<tr>
<td>ContCd1</td>
<td>หมายถึง</td>
<td>ชุดควบคุมไม่มีเหตุการณ์และผสมละลายเข้าในน้ำทะเลสังเคราะห์ที่ไม่เหมาะสม</td>
</tr>
<tr>
<td>ContCd3</td>
<td>หมายถึง</td>
<td>ชุดควบคุมไม่มีเหตุการณ์และผสมละลายเข้าในน้ำทะเลสังเคราะห์ที่ไม่เหมาะสม</td>
</tr>
<tr>
<td>MCd0</td>
<td>หมายถึง</td>
<td>ทริมเบิร์นขยายภายในน้ำทะเลสังเคราะห์ที่ผสมละลายเข้าในน้ำทะเลสังเคราะห์ที่ไม่เหมาะสม</td>
</tr>
<tr>
<td>MCd1</td>
<td>หมายถึง</td>
<td>ทริมเบิร์นขยายภายในน้ำทะเลสังเคราะห์ที่ผสมละลายเข้าในน้ำทะเลสังเคราะห์ที่ไม่เหมาะสม</td>
</tr>
<tr>
<td>MCd3</td>
<td>หมายถึง</td>
<td>ทริมเบิร์นขยายภายในน้ำทะเลสังเคราะห์ที่ผสมละลายเข้าในน้ำทะเลสังเคราะห์ที่ไม่เหมาะสม</td>
</tr>
<tr>
<td>NCd0</td>
<td>หมายถึง</td>
<td>ชุดควบคุมเหตุการณ์ภายในน้ำทะเลสังเคราะห์ที่ผสมละลายชิ้น 1 มก. ของการทดลองที่ 1</td>
</tr>
<tr>
<td>NCd1</td>
<td>หมายถึง</td>
<td>ชุดควบคุมเหตุการณ์ภายในน้ำทะเลสังเคราะห์ที่ผสมละลายชิ้น 1 มก. ของการทดลองที่ 1</td>
</tr>
<tr>
<td>NCd3</td>
<td>หมายถึง</td>
<td>ชุดควบคุมเหตุการณ์ภายในน้ำทะเลสังเคราะห์ที่ผสมละลายชิ้น 1 มก. ของการทดลองที่ 1</td>
</tr>
<tr>
<td>JCd0</td>
<td>หมายถึง</td>
<td>ทริมเบิร์นด้านท้ายเจ้ากู้ปูภายในน้ำทะเลสังเคราะห์ผสมละลายชิ้น 1 มก. ของการทดลองที่ 1</td>
</tr>
<tr>
<td>JCd1</td>
<td>หมายถึง</td>
<td>ทริมเบิร์นด้านท้ายเจ้ากู้ปูภายในน้ำทะเลสังเคราะห์ผสมละลายชิ้น 1 มก. ของการทดลองที่ 1</td>
</tr>
<tr>
<td>JCd3</td>
<td>หมายถึง</td>
<td>ทริมเบิร์นด้านท้ายเจ้ากู้ปูภายในน้ำทะเลสังเคราะห์ผสมละลายชิ้น 1 มก. ของการทดลองที่ 1</td>
</tr>
<tr>
<td>มม.</td>
<td>หมายถึง</td>
<td>มิลลิเมตร</td>
</tr>
<tr>
<td>ซม.</td>
<td>หมายถึง</td>
<td>เซนติเมตร</td>
</tr>
<tr>
<td>มล.</td>
<td>หมายถึง</td>
<td>มิลลิลิตร</td>
</tr>
<tr>
<td>ล.</td>
<td>หมายถึง</td>
<td>ลิตร</td>
</tr>
<tr>
<td>รายการ</td>
<td>หมายถึง</td>
<td>หน่วยการวัด</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>มก.</td>
<td>หมายถึง</td>
<td>มิลลิกรัม</td>
</tr>
<tr>
<td>ก.</td>
<td>หมายถึง</td>
<td>กรัม</td>
</tr>
<tr>
<td>ก.ก.</td>
<td>หมายถึง</td>
<td>กิโลกรัม</td>
</tr>
<tr>
<td>ตร.ชม.</td>
<td>หมายถึง</td>
<td>ตารางเซนติเมตร</td>
</tr>
<tr>
<td>ตร.ม.</td>
<td>หมายถึง</td>
<td>ตารางเมตร</td>
</tr>
<tr>
<td>ลบ.มม.</td>
<td>หมายถึง</td>
<td>เซนติเมตร</td>
</tr>
<tr>
<td>มก./กก.</td>
<td>หมายถึง</td>
<td>มิลลิกรัม/องากร/กิโลกรัม</td>
</tr>
</tbody>
</table>
บทที่ 1
บทนำ

ความสำคัญและที่มาของการปฏิบัติการพัฒนา

น้ำเป็นทรัพยากรธรรมชาติที่มีความสำคัญอย่างมากกับชุมชนในเมืองโลกทั้งยุคเป็นปัจจุบันในการสิ้นผลกับการผลิตในภาคเกษตรกรรม ภาคอุตสาหกรรม หรือภาคบริการ แต่ในปัจจุบันน้ำกำลังลดลงถึง 97% ซึ่งเป็นส่วนใหญ่ไม่สามารถนำมาใช้ในการอุปโภคบริโภคได้ ส่วนน้ำที่สามารถนำมาใช้ในการอุปโภคบริโภคได้คือน้ำต้นซึ่งคิดเป็น 3% ของปริมาณน้ำทั้งหมด ระดับน้ำที่สามารถนำมาใช้ในการอุปโภคบริโภคได้คือน้ำต้นซึ่งคิดเป็น 3% ของปริมาณน้ำทั้งหมด ระดับน้ำที่สามารถนำมาใช้ในการอุปโป
ดังนั้นแนวทางหนึ่งที่เป็นทางเลือกที่บานเบิกในการแก้ปัญหาที่เกิดขึ้นต่างล่าส่งคือการใช้ระบบกักเก็บทางชีวภาพ (Bioretention) ซึ่งเป็นกระบวนการในการบําบัดสารพิษที่มีอยู่ในน้ำโดยการใช้พื้นที่มีระบบปรับปรุงที่มีความสามารถในการดูดน้ำและรองรับน้ำที่มีคุณภาพดีกว่าการใช้ระบบกักเก็บทางชีวภาพโดยใช้พื้นที่ที่มีน้ำในหลายๆประเทศ เพราะนอกจากระบบจะมีความสามารถในการดูดน้ำแล้วยังสามารถปรับปรุงคุณภาพน้ำในเชิงเมืองให้มีความสวยงาม นับได้ว่าเป็นการสร้างระบบนิเวศให้กับเมืองและลดอุณหภูมิในพื้นที่เมืองได้อีกด้วย

วัตถุประสงค์ของการวิจัย

1. เพื่อศึกษาคัดลอกภาพของผู้ที่ใช้ในงานภูมิทัศน์สำหรับการประยุกต์ใช้เป็นระบบกักเก็บและปรับปรุงน้ำฝนของ

2. เพื่อศึกษาประสิทธิภาพของผู้ที่ใช้ในงานภูมิทัศน์ในการกักจัดแต่ละเมืองของจากการน้ำฝนของ

3. เพื่อศึกษาประสิทธิภาพของระบบกักเก็บและปรับปรุงน้ำฝนทางชีวภาพในการบําบัดน้ำฝนของ

ประโยชน์ที่คาดว่าจะได้รับ

1. ทราบคุณภาพของผู้ที่ใช้ในงานภูมิทัศน์เพื่อพัฒนาเป็นระบบกักเก็บและปรับปรุงน้ำฝนของ

2. ทราบประสิทธิภาพของผู้ที่ใช้ในงานภูมิทัศน์ในการกักจัดแต่ละเมืองของจากการน้ำฝนของ

3. ทราบประสิทธิภาพของระบบกักเก็บและปรับปรุงน้ำฝนทางชีวภาพเพื่อการป้องกันน้ำฝนของ
บทที่ 2

บทวนเอกสาร

แหล่งน้ำบนผิวโลก

ขั้นตอนที่สองที่เป็นพื้นที่พื้นที่ประมาณ 2 ใน 3 ของพื้นที่ผิวโลกทั้งหมด โดยแยกออกเป็นน้ำเค็ม 97% และน้ำจืด 3% ซึ่งในส่วนของน้ำจืดมีประมาณ 70% ของน้ำจืดทั้งโลกเป็นน้ำจืดที่เป็นส่วนของน้ำแข็งไม่สามารถกลับไปใช้ประโยชน์ได้ แต่น้ำจืดประมาณ 10.5 ล้านลบ.กม. และน้ำผักดิน (ทะเลสาบ, แม่น้ำ, ป่า, หนองและบึง เป็นต้น) ประมาณ 105,340 ล้านกม. คิดเป็น 0.3% ของปริมาณน้ำจืดทั้งหมด ซึ่งแหล่งน้ำดังกล่าวสามารถแบ่งได้ตามสถานที่ที่พบพบได้ 4 แหล่งคือแหล่งน้ำผิวติด (Surface water) แหล่งน้ำใต้ดิน (Underground water) แหล่งน้ำทะเลและแหล่งน้ำจากทิ้ง (สุริยาและคณะ, 2544; สมพงษ์และคณะ, 2553)

1. แหล่งน้ำผิวติด (Surface water) ได้แก่ น้ำจากแม่น้ำต่างๆ ลำน้ำธรรมชาติ หนองน้ำ ห้วย คลอง ป่า ลำธาร ที่มีน้ำผิวที่สำคัญที่สุดคือน้ำผิวคลองและลำน้ำ ห้วย คลอง และการไหลจ่ายของน้ำผิวชั้นน้ำดินและน้ำทะเลปะการังตามแม่น้ำหลักของสอง

2. แหล่งน้ำใต้ดิน (Underground water) น้ำใต้ดินเกิดจากน้ำผิวชั้นน้ำดินในดินลงไปในดินต่ำกว่าระดับน้ำที่น้ำผิวไม่ได้ ซึ่งน้ำใต้ดินจะไปสะสมตัวอยู่กิจวัตรกลับขึ้นของแม่น้ำ โดยเฉพาะ ชั้นดินที่เป็นกรวดทราย และดิน ปริมาณของน้ำที่จึงมีอยู่ในชั้นดินขนาดนี้จะค่อยๆ เพิ่มปริมาณมากขึ้นไปอยู่ในแหล่งน้ำใต้ดิน และมีบริเวณน้ำทะเลในถุุลุ่ม โดยทั่วไปน้ำใต้ดินจะมีการไหลลากผ่านพื้นที่ ได้ช่วงต่างๆของน้ำใต้ดิน

3. แหล่งน้ำจากทะเล (Sea water) ทะเลและมหาสมุทรเป็นแหล่งน้ำเพียงใหญ่ของวงจรน้ำในโลก ซึ่งน้ำจากทะเลนั้นก็มี พื้นที่จะขาดความอุ่นขึ่นขึ้น ในขณะเดียวกันทะเลน้ำในระหว่างเป็นปัจจัยสำคัญที่รักษาสภาพภูมิอากาศทั่วโลก

4. แหล่งน้ำจากฟ้า หรือ น้ำฝน (Storm water) ซึ่งเป็นน้ำที่ได้รับจากการตกของน้ำในบรรยากาศโดยตรง ดังนั้นน้ำตกฝนและน้ำฝนจากพื้นที่สูงในลักษณะนี้ที่มีพื้นที่ขนาด 92 ล้าน กม. จะได้ปริมาณน้ำถึง 50 ล. น้ำฝนในพื้นที่เหล่านี้หรือประมาณเท่าปริมาณที่มีบริโภค 200 มม. ซึ่งเป็นปริมาณที่มากเกินพอสำหรับการใช้น้ำของคนทั้งหมดในหนึ่งวัน (สุริยาและคณะ, 2544)
ประโยชน์และความสำคัญของน้ำ

น้ำเป็นสารประกอบที่จำเป็นสำหรับการดำรงชีวิตของสิ่งมีชีวิตทุกชนิด ไม่ว่าจะเป็นพืชหรือสัตว์ ภายในเซลล์และภายในร่างกายของสิ่งมีชีวิตมีน้ำเป็นองค์ประกอบมากมายกว่าร้อยละ 60 กระบวนการต่างๆ ที่เกิดขึ้นภายในร่างกายของสิ่งมีชีวิตจำเป็นต้องอาศัยน้ำเป็นสัตว์น้ำแคบเพื่อทำให้กระบวนการต่างๆ ดำเนินกิจกรรมไปได้ เช่น กระบวนการสร้างและย่อยสลายสารอาหารในร่างกาย (Metabolism) การขับถ่ายของเสีย (Excretion) การระบบการขนส่งและลำเลียงอาหาร (Transportation) เป็นต้น (สมพัฒน์และคณะ, 2553) น้ำทำให้เกิดความยืดหยุ่นและปรับที่เป็นไปอย่างสำคัญในการพัฒนาประเทศ ซึ่งใช้เพื่อการปลูกป่า ปลูกพืช ผลิตผลทางการเกษตรและส่งเสริมการอุดมสมบูรณ์ การผลิตพลังงาน เช่น แห้งซุปเปอร์ฟอร์มาซ์ ที่อยู่อาศัยและแหล่งอาหารที่สำคัญของสิ่งมีชีวิตทุกชนิด (พฤติสุข, 2553) การเกิดภูมิภูมิจากน้ำทำให้เกิดการอนุรักษ์สิ่งมีชีวิตในโลกและทำให้เกิดสภาพภูมิอากาศของโลก น้ำยังสามารถเจริญของสิ่งมีชีวิตที่ปลูกในที่แห้งคลุมถ้วย (อุตม, 2557)

โทษของน้ำ

ถึงแม้ว่าจะมีประโยชน์มากมายแต่การใช้น้ำprogramming เช่น น้ำเป็นพยาบาลโรคต่างๆ เช่น หัวใจโรค (Cholera) เป็นต้น โรคที่เกิดจากน้ำที่เพิ่มเติมได้จากเชื้อจุลินทรีย์เกิดโรคเท่านั้น น้ำอาจทำให้เกิดโรคที่เกิดจากสารเคมีเป็นพิษได้ด้วย ซึ่งสารเคมีเหล่านี้ได้เกิดการปนเปื้อนในน้ำเป็นจำนวนมากก็มีมาตรฐานที่กำหนดไว้ โรคที่เกิดจากสารเคมีเป็นพิษ (Chemical poisoning) เกิดจากสารเคมีที่ปนเปื้อนลงสู่แหล่งน้ำและกลับเข้าสู่ร่างกายของมนุษย์โดยการประกอบน้ำที่มีสารเคมีเหล่านั้นเป็นที่อยู่อาศัย สารพิษที่ทำให้เกิดโรคเชื้อแบคทีเรียเป็นพิษมักจะแบ่งออกเป็น 2 พวกใหญ่ๆ ตัวแรกที่ 1 (สมพัฒน์และคณะ, 2553) ส่วนน้ำที่มีลักษณะที่คุณชั่ว มีสารอินทรีย์และสารแขวนลอยละปูนในบริเวณมากมาย จะส่งผลกระทบต่อการดำรงชีวิตของพืชในน้ำและการดำรงชีวิตของสัตว์น้ำ ส่วนน้ำที่มีสารพิษจำพวกโควิดนักปนเปื้อนนั้นเรียกสัตว์น้ำและมุมยิง เช่น การเกิดโรคเคมีมาร์ตา (Minamata) จากพิษของสารปรอท และการเกิดโรคอินทรีย์ (Itai-Itai) จากพิษของสารแคดเมียม (อุตม, 2557) แม้น้ำเกิดโรคภูมิแพ็กร้ายของโรคที่ร้ายร้ายในปี พ.ศ. 2523 พบปริมาณสารประกอบสูงมากในการระบบน้ำที่สามารถใช้น้ำในแม่น้ำ 1 ชั่ว เป็นระยะเวลานาน แต่ไม่ได้ zar ประชากรในประเทศจะต้องปรับปรุงการใช้น้ำ ด้วยการใช้น้ำที่เป็นน้ำที่ปลอดภัยเป็นหลักจากการใช้น้ำที่ปลอดภัย ในการรักษาโรคในโลกเป็นต้น (สุทธิละและคณะ, 2544) ซึ่งการเปลี่ยนแปลงของคุณภาพน้ำสำหรับใหญ่เกิด
จากกระจานน้ำที่จากการใช้ทรัพยากรน้ำ

กิจกรรมต่างๆ ที่เกิดขึ้นในชีวิตประจำวันของมนุษย์ทำให้เกิดปัญหาที่ทรัพยากรน้ำได้
ปัญหาการใช้น้ำของไทย เช่น ความต้องการใช้น้ำมิตรภาพเพิ่มมากขึ้น ในช่วงฤดูแล้งมีน้ำที่มีปริมาณน้อย
ไม่เพียงพอต่อความต้องการใช้น้ำ ทำให้เกิดภาวะขาดแคลนน้ำ แต่ละน้ำที่มีอยู่ในปัจจุบันมีความน่า
เสียเพิ่มมากขึ้นการใช้น้ำในกิจกรรมต่างๆ จากการวางแผนในการใช้น้ำที่ดี ทำให้เกิดการใช้น้ำอย่าง
สิ้นเปลืองการกวดคุม ดูแล ปรับปรุงงานแหล่งน้ำต่างๆ (สมพิทักษ์และคณะ, 2553) เช่น โรงงาน
ทุติยาการป้องกันโรคเสียที่เกิดขึ้นจากการบริการคล้องลูกมันเท่านั้นทำให้น้ำมีสภาพแวดล้อม สมดุลให้
สัตว์น้ำหาย สถาบันเทคโนโลยีเอเซีย (Asian Institute of Technology: AIT) ได้ทำการสำรวจ
การตกค้างของสารโลหะหนักและอาหารเมล็ดในแม่น้ำ 4 สายและอ่าวไทยตอนบน พบว่ามี แคดเมียม,
ทองแดง ปะทะ ตะกั้ง โครเมียม ธาตุ มีปริมาณสูงเกินที่มาตรฐานโลกได้กำหนด ถ้าไกล
ปากน้ำที่พบในปริมาณสูง พบโลหะหนักเหล่านี้ในสาดน้ำและชะลอกันบริเวณปากแม่น้ำ ซึ่งค่า
มาตรฐานของโลหะหนักในเมืองร้านขายที่สถาบันพืชน้ำกินได้คือ แคดเมียมไม่เกิน 20.0 μg/L,
ทองแดงไม่เกิน 20.0 μg/L โครเมียมไม่เกิน 50.0 μg/L และตะกั้งไม่เกิน 100.0 μg/L (สุทธิสินและคณะ, 2544)

ตารางที่ 1 พิษจากโลหะหนักและสารปรารถน้ำทูติยา

<table>
<thead>
<tr>
<th>โลหะหนัก (Heavy metal)</th>
<th>สารปรารถน้ำทูติยา (Pesticides)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ประจวรปิ้ง (Mercury poisoning)</td>
<td>สารพิษอยู่ในรูปสารพิษกลั่นออกภายในน้ำหรือ</td>
</tr>
<tr>
<td>แคดเมียมปิ้ง (Cadmium poisoning)</td>
<td>ปะทะปิ้งภายในน้ำ สารพิษปรารถน้ำทูติยาอยู่ในรวมบาง</td>
</tr>
<tr>
<td>ทองแดงปิ้ง (Lead poisoning)</td>
<td>สารพิษกลั่นเมล็ด (Insecticide) สารพิษกลั่นหน้า</td>
</tr>
<tr>
<td>ทองแดงปิ้ง (Cupper poisoning)</td>
<td>(Herbicide) สารพิษกลั่นสีสีขาว (Algaecide)</td>
</tr>
<tr>
<td>สังกะสีปิ้ง (Zinc poisoning)</td>
<td>เป็นกั้น</td>
</tr>
</tbody>
</table>

ที่มา: ตั้งแปลงจาก สมพิทักษ์และคณะ (2553)
ประกาศของแหล่งน้ำสิ่งมีชีวิต

สำนักงานคณะกรรมการสิ่งแวดล้อมแห่งชาติได้แบ่งประเภทแหล่งน้ำสิ่งมีชีวิตที่ไม่ใช่ทะเลออกเป็น 5 ประเภท ได้แก่

1. แหล่งน้ำประเภทที่ 1 ได้แก่ แหล่งน้ำที่มีสภาพตามธรรมชาติ โดยปราศจากน้ำทิ้งจากการกิจกรรมทุ่งเกษตรและสามารถเป็นประโยชน์เพื่อการอุปโภคและบริโภคโดยต้องผ่านการสำรวจอุณหภูมิของความผิดปกติของสิ่งมีชีวิตต่อพื้นฐาน การระบุถึงระบบนิเวศวิทยาของแหล่งน้ำ

2. แหล่งน้ำประเภทที่ 2 ได้แก่ แหล่งน้ำที่ได้รับน้ำทิ้งจากการกิจกรรมบางประเภท และสามารถเป็นประโยชน์เพื่อการอุปโภคและบริโภคโดยต้องผ่านการสำรวจอุณหภูมิของความผิดปกติและผ่านกระบวนการปรับปรุงคุณภาพน้ำที่ใช้ก่อน การอนุรักษ์สัตว์น้ำ การประมง การว่ายน้ำและกีฬาทางน้ำ

3. แหล่งน้ำประเภทที่ 3 ได้แก่ แหล่งน้ำที่ได้รับน้ำทิ้งจากการกิจกรรมบางประเภท และสามารถเป็นประโยชน์เพื่อการอุปโภคและบริโภคโดยต้องผ่านการสำรวจอุณหภูมิของความผิดปกติและผ่านกระบวนการปรับปรุงคุณภาพน้ำที่ใช้ก่อน การทำการประมง

4. แหล่งน้ำประเภทที่ 4 ได้แก่ แหล่งน้ำที่ได้รับน้ำทิ้งจากการกิจกรรมบางประเภท และสามารถเป็นประโยชน์เพื่อการอุปโภคบริโภคโดยต้องผ่านการสำรวจอุณหภูมิของความผิดปกติและผ่านกระบวนการปรับปรุงคุณภาพน้ำที่ใช้ก่อน การทำการประมง

5. แหล่งน้ำประเภทที่ 5 ได้แก่ แหล่งน้ำที่ได้รับน้ำทิ้งจากการกิจกรรมบางประเภท และสามารถเป็นประโยชน์เพื่อการเคลื่อนที่

สำหรับคุณภาพน้ำในที่มีน้ำทิ้งที่ผ่านทางมาตรฐานควรจะมีการตรวจวัดค่าการมีดีเออร์ตามตารางที่ 2
ตารางที่ 2 มาตรฐานคุณภาพน้ำสิ่งสิ่ง

<table>
<thead>
<tr>
<th>ตัวชี้วัดคุณภาพน้ำ</th>
<th>หน่วย</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. สี กลิ่น และรส</td>
<td>-</td>
<td>5′</td>
<td>5′</td>
<td>5′</td>
<td>5′</td>
<td>-</td>
</tr>
<tr>
<td>(Color, Odour and Taste)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. อุณหภูมิ (Temperature)</td>
<td>องศาเซลเซียส</td>
<td>3</td>
<td>3′</td>
<td>3′</td>
<td>3′</td>
<td>-</td>
</tr>
<tr>
<td>3. ความเป็นกรดและด่าง (pH)</td>
<td>-</td>
<td>5-9</td>
<td>5-9</td>
<td>5-9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4. ออกซิเจนที่ละลาย (DO)</td>
<td>มก./ล.</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5. ปิโตรเลียม (BOD)</td>
<td>มก./ล.</td>
<td>1.5</td>
<td>2.0</td>
<td>4.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6. แบคทีเรียกลุ่มโคไลฟอร์มทั่วไป (Total Coliform Bacteria)</td>
<td>MPN/100</td>
<td>5,000</td>
<td>20,000</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7. แบคทีเรียกลุ่มโคไลฟอร์ม (Fecal Coliform Bacteria)</td>
<td>MPN/100</td>
<td>1,000</td>
<td>4,000</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8. ไนเตรต (NO₃⁻)</td>
<td>มก./ล.</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9. แอมโมเนีย (NH₃)</td>
<td>มก./ล.</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10. ฟิล์ม</td>
<td>มก./ล.</td>
<td>0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11. ทองแดง (Cu)</td>
<td>มก./ล.</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12. นิกเกิล (Ni)</td>
<td>มก./ล.</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13. แมกนีเซียม (Mn)</td>
<td>มก./ล.</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14. สังกะสี (Zn)</td>
<td>มก./ล.</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15. แคลเซียม (Ca)</td>
<td>มก./ล.</td>
<td>0.005*</td>
<td>0.05**</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16. โครเมียม (Cr Hexavalent)</td>
<td>มก./ล.</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17. ตะกั่ว (Pb)</td>
<td>มก./ล.</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18. เอสโตรปี (As)</td>
<td>มก./ล.</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19. ปรอทพิษ (Total Hg)</td>
<td>มก./ล.</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
ตารางที่ 2 (ต่อ)

<table>
<thead>
<tr>
<th>ตัวอย่าง</th>
<th>เกณฑ์ค่าสูงสุดตามการแบ่ง</th>
<th>ประเภท (1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ตัวอย่าง</th>
<th>หน่วย</th>
<th>ค่า</th>
<th>ค่า</th>
<th>ค่า</th>
<th>ค่า</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.ไฮโดรไซน์ (Cyanide)</td>
<td>มก./ส.</td>
<td>0.005</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.กัมมันตรังสี (Radioactivity)</td>
<td>เบ็คเคอเรล/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>คาเรอกซิล (Alpha)</td>
<td>สิ่ง</td>
<td>0.1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>คาเรอกซิล (Beta)</td>
<td></td>
<td>1.0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.สารกัมมันตรังสีและสารกัมมันตรังสีอื่นที่มีคลอโรบีน</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>พาร์บัท (Total Organochlorine Pesticides)</td>
<td>มก./ส.</td>
<td>3</td>
<td>0.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>23.เดดริน (DDT)</td>
<td>มิกร์/</td>
<td>5</td>
<td>1.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>24.นิชอนิเดดริน (Alpha-BHC)</td>
<td>มิกร์/</td>
<td>5</td>
<td>0.02</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>25.ติลพิริน (Dieldrin)</td>
<td>มิกร์/</td>
<td>5</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>26.แอลเดริน (Aldrin)</td>
<td>มิกร์/</td>
<td>5</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27.เซ็ปทาคลอร์และเซ็ปทาคลอร์อีปโซคลอร์ (Heptachlor & Heptachlorepoxide)</td>
<td>มิกร์/</td>
<td>5</td>
<td>0.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28.เอโตรดริน (Endrin)</td>
<td>มิกร์/</td>
<td>5</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

หมายเหตุ

- คือ ค่า DO เป็นเกณฑ์มาตรฐานค่าสูง
- คือ เป็นเกณฑ์มาตรฐานต่ำ
- คือ อุณหภูมิของน้ำจะต้องไม่สูงกว่าอุณหภูมิตามธรรมชาติดีกัน 3 องศาเซลเซียส
- คือ น้ำที่มีความกระด้างในรูปของ CaCO₃ไม่เกินกว่า 100 มิลลิกรัมต่อลิตร
- คือ น้ำที่มีความกระด้างในรูปของ CaCO₃เกินกว่า 100 มิลลิกรัมต่อลิตร
- คือ องศาเซลเซียส
- MPN คือ Most Probable Number
วิธีการตรวจสอบเป็นไปตามวิธีการมาตรฐานสำหรับการวิเคราะห์น้ำและน้ำเสีย Standard Methods for Examination of Water and Wastewater ซึ่ง APHA : American Public Health Association , AWWA : American Water Works Association และ WPCF : Water Pollution Control Federation ของสหรัฐอเมริกา รวมถึงการหักตัว (กรรมาภิบาลน้ำ, 2535)

การ쁜น้ำของมลพิษจากดินสู่แหล่งน้ำและทะเล

แหล่งกำเนิดมลพิษบางชนิดมีอยู่แล้วตามธรรมชาติ และผู้ที่ทำให้มลพิษเหล่านี้นั้น
ทำมิได้ตั้งแต่การกระทำของคนเท่านั้น แต่อาจมาจากการน้ำน้ำฝนที่ตกลงจากฟ้าหรือการไหลพ
ลำน้ำที่ไหล (Runoff) ที่มีสารพิษ น้ำไหลนี้จะสะสมในแหล่งพิทักษ์ที่มันที่น้ำและพันิชพิษที่สู
แหล่งน้ำตามธรรมชาติ ซึ่งสารพิษเหล่านี้นั้นจะถูกกินโดยสัตว์หรือพันิชพิษที่โคกๆ แล้วเข้าไปสะสมใน
สัตว์หรือพันิชพิษที่โคกๆ ในโคกๆ จะถูกกินโดยสัตว์หรือพันิชพิษที่โคกๆ ผลกระทบต่อสัตว์และทรัพยาภิัยสู
แหล่งน้ำดังกล่าวจะถูกกินโดยสัตว์หรือพันิชพิษที่โคกๆ ผลกระทบต่อสัตว์และทรัพยาภิัยสู
แหล่งน้ำดังกล่า
สมดุลของสารพิษในน้ำใหม่ของแหล่งน้ำ สารพิษที่สะสมในน้ำใหม่ได้แก่ เชื้อต่ำโรค สารอินทรีย์ สารอาหาร ตะกอน และสารพิษ (USEPA, 1996) ความเข้มข้นของสารพิษในน้ำใหม่ของแหล่งน้ำจะเพิ่มขึ้นเมื่อมีการไหลจากสถานที่หนึ่งไปยังอีกสถานที่หนึ่ง หรือเกิดการเปลี่ยนแปลงตามธรรมชาติหรือเกิดจากการเพิ่มขึ้นของกิจกรรมการดำเนินชีวิตของมนุษย์ (Tuccillo, 2006) มีรายงานว่าสารพิษจากงานที่เพิ่มขึ้นก่อให้เกิดการปนเปื้อนของน้ำจากสถานที่ในรูปของกิจกรรมการเพาะปลูกของพืช ผลและพืช การรักษาพื้นที่ดินและโคกป่า สำหรับการปนเปื้อนสารพิษจะออกมาในรูปของอนุภาคที่อยู่ในอากาศลดลงการลดลงด้านกลับกันยังพบเห็นถ้าปริมาณสารพิษต่ำกว่าปริมาณต่ำกว่าเราะนำสารพิษแล้วสารพิษจะถูกน้ำและกลับเข้าสู่บรรยากาศได้โดยธรรมชาติ ซึ่งส่วนใหญ่แล้วมักจะมีผลกระทบต่อกิจกรรมและกิจการที่อยู่บนที่อยู่อาศัยของคน ทั้งนี้ได้จากการกลับสู่ธรรมชาติโดยไม่ได้รับการปนเปื้อนสารพิษ (Peter and Adrienne, 2011) นอกจากนี้ Mikkelsen et al. (1996) ได้ทำการศึกษาการปนเปื้อนสารพิษในน้ำใหม่ของงานเกษตรของศูนย์น้ำและน้ำที่น้ำไว้ที่ต่างๆ ที่เกิดกัน 2 ที่นี้ โดยพบว่าปริมาณของสารพิษใน Non-point sources pollutants เช่น โลหะหนักจะมีปริมาณสูงที่ปริมาณต่ำกว่าปริมาณต่ำกว่าต้องการอยู่ในน้ำใหม่ของงานเกษตร กระหว่างที่ 3 แต่ยังไม่เท่ากับน้ำใหม่ของที่ก้าวเคลื่อนที่น้ำและผลกระทบที่เกิดต่างกัน

ในประเทศไทย Menasveta et al. (1979) ได้ทำการศึกษาถึงการเพาะปลูกของพืชโดยใช้สารพิษที่สะสมในน้ำใหม่ของแหล่งน้ำจ้ำช้างให้กับพืชของสีสัน พบว่ามีผลต่อการเจริญเติบโต แต่ละเนื้อพืชของสีสัน และสัดส่วนในสิ่งมีชีวิตอยู่ในน้ำใหม่ของงานเกษตรเช่นกัน โดยพบให้ผลในช่วงต่ออยู่ในน้ำใหม่ของงานเกษตรช่วงต่ออยู่ 0.001-0.005 มก./ลิตร ในตัวอย่างเสิร์ฟออกน้ำ 0.114-0.850 มก./น. ในน้ำ 0.045-2.607 มก./น. และในน้ำกินน้ำ 0.652-1.281 มก./น.

อย่างไรก็ตามแม้ว่าจะพบแค่เนื้อพืชในน้ำใหม่ของงานเกษตรนี้ แต่แค่เนื้อพืชสามารถที่จะสะสมอยู่ตามกลไกของพืช ในน้ำใหม่ ทั้งนี้ แต่ยังไม่สามารถหาเหตุอ้างอิงทางคล่องร่างกายมนุษย์ได้ หรือแค่เนื้อพืชจะสะสมอยู่ในตัวและไม่ ซึ่งจะนำไปสู่การใช้วิเคราะห์สถานการณ์ในภาวะที่ดีคือการเชื่อมต่อจากการทำลายและเครื่องชีวิตของแค่เนื้อพืชในร่างกายมนุษย์มีระยะเวลาอยู่ 20-30 ปี (Manahan, 1989)
แคดเมียม

แคดเมียมมีลักษณะทางกายภาพสีแดงและเรียบมีที่คล้ายคลึงกับธาตุสังกะสี แต่แคดเมียมมีความเป็นพิษสูง แคดเมียมสามารถเข้าสู่พืชสัตว์ในระบบออร์แกนิคเนื้อเยื่อจากการร่างของดอกลาภก้นกับต่างสังกะสี เช่น แคดเมียมสามารถแทรกที่ธาตุสังกะสีในออร์แกนิค Carboxypeptidase ซึ่งเป็นตัวแปรปฏิกิริยาในการแตกตัวของพอลิเปปไทด์ (Peptide) แคดเมียมจะอยู่ร่วมกับธาตุสังกะสีในดินและสัตว์ โดยมีอัตราส่วน Cd/Zn ประมาณ 1:100 ถึง 1:1,000 (ศูนย์ฯ อ. 2539)

1. ประโยชน์และโทษของแคดเมียม

แคดเมียมถูกนำมาใช้ประโยชน์มากมายในทางอุดซากกรรม เช่น ใช้เป็นสารหลักของสารเคลือบป้องกันสิ่งไม่ให้ใช้งานทำลายสิ่งทำสี แคดเมียมและแคดเมียมซัลไฟด์ใช้เป็นสารเคลือบสี แต่แคดเมียมสามารถเกิดเป็นสารประกอบของแคดเมียมซัลไฟด์ แคดเมียมสามารถเกิดเป็นแคดเมียมออกซ์ไธโอน (Sphalerite, ZnS) หรือแคดเมียมซัลไฟด์ (Calamine, ZnCO3) ผู้ที่ได้รับแคดเมียมมากเกินไป เช่น นักวิทยาศาสตร์รถตู้อย่าง 15 มก./ค. ซึ่งเป็นไปได้ที่จะเกิดการระเบิดของแคดเมียมเนื่องจากมีปฏิกิริยาปฏิกิริยาและปฏิกิริยาเกิดขึ้น กระดูกและขนนุ่มขาวกาว “ฮิโดร-อิด” (Ital-ital) แคดเมียมเป็นสารก่อมะเร็ง โดยทำให้เกิดมะเร็งของเนื้อเยื่อที่อยู่ลึก (Sarcoma) เข้ากลับเนื้อกระดูก

2. ปฏิกิริยาในตับ

แคดเมียมเคลื่อนที่ได้ในตับที่มีค่า pH ในช่วง 4.5-5.5 แต่เนื่องจากแคดเมียมมีคุณสมบัติเป็นการเคลื่อยไม่ค่อยเคลือบต่อ อย่างไรก็ตามในสารตับที่เป็นสารควบคุมการในการละลายของแคดเมียมจะช่วยย่อยกรดกรดตัวของเหล็กและอุปกรณ์ และบริโภคในตับไว้อยู่ในตับ นอกจากนั้นในสารตับเป็นกรดแคดเมียมจะเคลื่อนที่ได้กว้างขวางมากกว่าแคดเมียมในหัวดินและหัวดินจะมีปริมาณไม่เกิน 0.3 มก./ค. และจะพบอยู่ร่วมกับธาตุสังกะสี แคดเมียมในตับอยู่ในสารละลายได้ง่ายโดยจะอยู่ในรูป Cd²⁺ เป็นส่วนใหญ่ โดยอาจอยู่ในรูปไนโตรเจนเชิงจินจก และสารประกอบได้ เช่น CdCl₂, CdO₂⁺, CdHCO₃⁻, CdCl₃ -, CdCl₄²⁻, Cd(OH)₃⁻, Cd(OH)₄²⁻, CdO และ CdCO₃ เป็นตัวซึ่งเป็นปัจจัยสำคัญที่สุดที่ส่งผลต่อการเคลื่อนที่ของแคดเมียมในตับค่า pH และค่าอัตราตัวอย่าง โดยในตันที่มีกักย์ตัวอย่างสูง แคดเมียมจะอยู่ในรูปสารประกอบ CdO หรือ CdCO₃ หรืออาจอยู่ร่วมกับฟอลเฟทได้ในการกิน

3. ปริมาณแคดเมียมในตับและหัวดิน

ปริมาณแคดเมียมในตับที่ไม่ต้องการมีค่าเฉลี่ยประมาณ 0.07-1.0 มก./ค. (ศูนย์ฯ อ. 2539) โดยมีค่าเฉลี่ยสูงในตันอินอิสโตของตัน (ตารางที่ 4) และค่าเฉลี่ยโดยรวมของตันทั้งหมดมีค่า 0.53 มก./ค.
ปริมาณแคดเมียมในพืชทั่วไปจะมีต่ำมาก แต่จะมีต่ำสุดในพืชบางชนิด เช่น ผักสดที่มี 0.66 มก./กก. หรือในใบสแตชิส (Spinach) ในปริมาณ 0.11 มก./กก. (น้ำหนักสด) ฟิชกินใบหรือฟิชกินบาร์บีช็อกจะเป็นต้น แต่แคดเมียมสูงกว่าตามบุญกิจ (ตารางที่ 5) เมื่อมีการปะปนแคดเมียมจะสะสมอยู่ในร่างกายที่สูง โดยจะสามารถสะสมได้ในโปรตีน และมีการเคลื่อนย้ายสู่เม็ดเลือดได้ดี (ตารางที่ 6)

4. แคดเมียมในน้ำ
แคดเมียมในน้ำแวดล้อมมีกิจกรรมกล้ายกับธาตุต่างๆ ในรูปแบบของแคดเมียมจะขึ้นอยู่กับค่า pH ได้มาก

4.1 แคดเมียมคลอไรด์ (Cadmium halide) มี 4 ชนิดที่เป็นที่รู้จักกันในรูปของ CdCl₂ รูปแบบที่พบมากในน้ำทะเลคือ CdCl₂, CdCl₃ และCdCl₄⁻ และประมาณ 2.5% ของแคดเมียมทั้งหมดจะพบในรูปของไอออนแคดเมียมฟรี (Free cadmium ion; Cd²⁺) รูปแบบของแคดเมียมคลอไรด์สามารถละลายได้ในน้ำและเกิดเป็น Complex Ions ในน้ำทะเลที่มีความเต็ม 10-35 ppt

4.2 แคดเมียมซัลไฟด์ (Cadmium sulphide) การประกอบแคดเมียมรูปนี้เกิดขึ้นโดยการผ่านโอโซนซัลไฟด์ (H₂S) ลงในสารละลายแคดเมียม (Cd⁺Ⅱ) ไอออนของ Cd⁺Ⅱ และS₂⁻ สามารถรวมตัวกันได้ สามารถประกอบกันเกิดขึ้นสามารถละลายได้ดีน้อยแคดเมียมซัลไฟด์มักจะเป็นรูปแบบที่ค่อนข้างคงที่

4.3 แคดเมียมออกไซด์ (Cadmium oxide) รูปแบบของแคดเมียมออกไซด์เกิดขึ้นจากปฏิกิริยาออกซิเจนและแคดเมียมที่สัมพันธ์กับอากาศเป็นเวลานาน โครงสร้างของแคดเมียมออกไซด์มีลักษณะกล้ายกับไฮโดรออกไซด์สามารถเปลี่ยนรูปได้เมื่อมีความร้อน เชื้อจากการสูญเสียออกซิเจน แคดเมียมออกไซด์ละลายได้ในกรด และละลายได้น้อยในน้ำและในสภาพทั่วไป

4.4 การประกอบออกแกนแคดเมียม (Organocadmium compound) ได้จากการเตรียม Grignard reagent ในสถานที่เหมาะสม เช่น การเตรียม Dimethylcadmium ที่ 105.7°C และ Diethylcadmium ที่ 64°C ภายใต้ความตัน 19 mm-Hg สามารถละลายตัวได้ในเหลืองน้ำ (สุรัจจ ญันนา, 2549)
ตารางที่ 3 ปริมาณโลหะหนักจากน้ำฝนของจากแหล่งชุมชนจากประเทศต่างๆ

<table>
<thead>
<tr>
<th>ประเทศ</th>
<th>Cd</th>
<th>Cr</th>
<th>Pb</th>
<th>Zn</th>
<th>Cu</th>
<th>Ni</th>
<th>แหล่งสารหลัก</th>
<th>ตัวอย่าง</th>
</tr>
</thead>
<tbody>
<tr>
<td>สิงกโปร์</td>
<td>0.11</td>
<td>1.9</td>
<td>12.4</td>
<td>1.06</td>
<td>52</td>
<td>-</td>
<td>Joshi and Balasubramanian (2010)</td>
<td>ที่พักอาศัย</td>
</tr>
<tr>
<td>อังกฤษ</td>
<td>0.09</td>
<td>2.6</td>
<td>11.8</td>
<td>4.74</td>
<td>23</td>
<td>-</td>
<td>Rule et al. (2006)</td>
<td>ที่พักอาศัย</td>
</tr>
<tr>
<td>รัฐเวสต์มิสัน</td>
<td>n/a</td>
<td>5</td>
<td>16</td>
<td>32</td>
<td>203</td>
<td>-</td>
<td>Bannerman et al., (1996)</td>
<td>ที่พักอาศัย</td>
</tr>
<tr>
<td>ฮังกิว</td>
<td>0.12</td>
<td>n/a</td>
<td>7.5</td>
<td>1.5</td>
<td>100</td>
<td>-</td>
<td>Davis et al., (2001)</td>
<td>ที่พักอาศัย</td>
</tr>
<tr>
<td>ฮ่องกง</td>
<td>1.2</td>
<td>n/a</td>
<td>137</td>
<td>400</td>
<td>80</td>
<td>n/a</td>
<td>-</td>
<td>ที่จอดรถ</td>
</tr>
<tr>
<td>เกาหลีใต้</td>
<td>1.9</td>
<td>11</td>
<td>170</td>
<td>407</td>
<td>97</td>
<td>11</td>
<td>Göbel et al., (2007)</td>
<td>ถนนสาธารณะ</td>
</tr>
<tr>
<td>เกาหลีเหนือ</td>
<td>3.7</td>
<td>13</td>
<td>224</td>
<td>345</td>
<td>65</td>
<td>27</td>
<td>-</td>
<td>ถนนสองชั้น</td>
</tr>
<tr>
<td>สิงคโปร์</td>
<td>-</td>
<td>-</td>
<td>2.890</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Lee and Bang (2000)</td>
<td>ที่พักอาศัย</td>
</tr>
<tr>
<td>ฮ่องกง</td>
<td>-</td>
<td>-</td>
<td>314</td>
<td>453</td>
<td>-</td>
<td>-</td>
<td>Taebi and Droste (2004)</td>
<td>บริเวณชุมชน</td>
</tr>
</tbody>
</table>

หมายเหตุ - คือ ไม่ได้ทำการตรวจสอบ
n/a คือ ตรวจสอบไม่พบ

ที่มา: ตัดแปลงจาก (Bannerman et al., 1996; Lee and Bang, 2000; Davis et al., 2001; Taebi and Droste, 2004; Rule et al., 2006; Göbel et al., 2007; Joshi and Balasubramanian, 2010)
ตารางที่ 4 ปริมาณแคลเซียมในดินบริเวณต่างๆ (มก./กг.)

<table>
<thead>
<tr>
<th>ชนิดดิน</th>
<th>ปริมาณแคลเซียม</th>
<th>ประเทศ</th>
</tr>
</thead>
<tbody>
<tr>
<td>พอดดัลล์ และดินเนื้อหยาบ</td>
<td>0.21</td>
<td>อนิรุก้า</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>โฟเลม์</td>
</tr>
<tr>
<td></td>
<td>0.43</td>
<td>แคปตา</td>
</tr>
<tr>
<td>ดินเว้นถังดินเหนียว</td>
<td>0.27</td>
<td>อนิรุก้าและโฟเลม์</td>
</tr>
<tr>
<td></td>
<td>0.64</td>
<td>แคปตา</td>
</tr>
<tr>
<td>สิ่งฝังดินะซ์และดินอินทร์ย์อิน</td>
<td>0.72</td>
<td>อนิรุก้า แคปตา และ สำนักงานอาณาจักร</td>
</tr>
<tr>
<td>ดินการทำไร่</td>
<td>1.00</td>
<td>สำนักงานอาณาจักร</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>ผู้ปุ้น</td>
</tr>
<tr>
<td>n/a</td>
<td></td>
<td>อนิรุก้า</td>
</tr>
</tbody>
</table>

ที่มา: ตัดแปลงจาก (ศูนย์ฯ, 2539)

ตารางที่ 5 ปริมาณแคลเซียมในพืช (มก./กг. น้ำหนักแห้ง)

<table>
<thead>
<tr>
<th>ชนิดพืช</th>
<th>ส่วนของพืช</th>
<th>ปริมาณแคลเซียมในพืช</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ข้าว</td>
<td>เมล็ด</td>
<td>0.01-0.11</td>
<td>เมล็ดไม่ใช้ดี</td>
</tr>
<tr>
<td>ข้าวสาลี</td>
<td>เมล็ด</td>
<td>0.01-0.26</td>
<td></td>
</tr>
<tr>
<td>ข้าวเหนียว</td>
<td>เมล็ด</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>ข้าวโพด</td>
<td>เมล็ด</td>
<td>0.02-0.35</td>
<td></td>
</tr>
<tr>
<td>ข้าวโพดหวาน</td>
<td>เมล็ด</td>
<td>0.06-01</td>
<td></td>
</tr>
<tr>
<td>กระหลั่มปลี</td>
<td>ใบ</td>
<td>0.03-1.25</td>
<td></td>
</tr>
<tr>
<td>ลูกกาหย่อม</td>
<td>ใบ</td>
<td>0.12-0.66</td>
<td></td>
</tr>
<tr>
<td>หอมหัวใหญ่</td>
<td>หัว</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>มันแก้ว</td>
<td>หัว</td>
<td>0.03-0.18</td>
<td></td>
</tr>
</tbody>
</table>

ที่มา: ตัดแปลงจาก (ศูนย์ฯ, 2539)
ตารางที่ 6 ปริมาณแคเมียไนฟิล์ที่ปลูกในดินที่มีการปนเปื้อน (กก./กก. น้ำหนักแห้ง)

<table>
<thead>
<tr>
<th>ที่มา</th>
<th>ที่ค้น</th>
<th>จำนวนของที่ค้น</th>
<th>ปริมาณ</th>
<th>ประเทศ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>เทียนเขียว</td>
<td>น้ำยา</td>
<td>ใบ</td>
<td>1.1-2.0</td>
<td>สหรابาณีทารก</td>
</tr>
<tr>
<td></td>
<td>ทำการผลิต</td>
<td>เอนซีม</td>
<td>4.9</td>
<td>สหรับาณีทารก</td>
</tr>
<tr>
<td>ยุคสมุทรป่าแกร่ง</td>
<td>น้ำยา</td>
<td>ใบ</td>
<td>8.2</td>
<td>สหรับาณีทารก</td>
</tr>
<tr>
<td></td>
<td>ผลิตผลิต</td>
<td>ใบ</td>
<td>45</td>
<td>ออสเตรเลีย</td>
</tr>
<tr>
<td>สารในบริเวณ</td>
<td>กระหลับปิค</td>
<td>ใบฉอก</td>
<td>1.1-3.8</td>
<td>สหรับาณีทารก</td>
</tr>
<tr>
<td></td>
<td>ผลิตผลิต</td>
<td>ใบ</td>
<td>0.9-7.0</td>
<td>ออสเตรเลีย</td>
</tr>
<tr>
<td>ผัก</td>
<td>ช้าง</td>
<td>แม่ชี / ข้าว</td>
<td>0.72-4.17</td>
<td>ญี่ปุ่น</td>
</tr>
<tr>
<td>สารในบริเวณ</td>
<td>กระหลับปิค</td>
<td>ใบฉอก</td>
<td>1.1-3.8</td>
<td>สหรับาณีทารก</td>
</tr>
<tr>
<td></td>
<td>ผลิตผลิต</td>
<td>ใบ</td>
<td>0.9-7.0</td>
<td>ออสเตรเลีย</td>
</tr>
<tr>
<td>ผัก</td>
<td>ช้าง</td>
<td>แม่ชี / ข้าว</td>
<td>5.2 (ค่าสูงสุด)</td>
<td>ญี่ปุ่น</td>
</tr>
<tr>
<td>หรือ</td>
<td>กระหลับปิค</td>
<td>ใบฉอก</td>
<td>1.1-3.8</td>
<td>สหรับาณีทารก</td>
</tr>
<tr>
<td></td>
<td>ผลิตผลิต</td>
<td>ใบ</td>
<td>0.9-7.0</td>
<td>ออสเตรเลีย</td>
</tr>
<tr>
<td>เชื้อชาติประกอบที่</td>
<td>ข้าวโพด</td>
<td>ใบฉอก</td>
<td>35</td>
<td>ออสเตรเลีย</td>
</tr>
<tr>
<td>ผัก</td>
<td>ท้องเรือ</td>
<td>อาหาร</td>
<td>2.3</td>
<td>ออสเตรเลีย</td>
</tr>
<tr>
<td>หรือ</td>
<td>ข้าวเสียด</td>
<td>แม่ชี</td>
<td>5.5-14.2</td>
<td>โอกาสี่</td>
</tr>
<tr>
<td></td>
<td>ผลิตผลิต</td>
<td>ใบ</td>
<td>19-47</td>
<td>โอกาสี่</td>
</tr>
<tr>
<td>ใบ</td>
<td>และ</td>
<td>397-898</td>
<td>โอกาสี่</td>
<td></td>
</tr>
</tbody>
</table>

ที่มา: ตัดแปลงจาก (คุณมาศ, 2539)

วิธีการการจัดสรรพืชอบ

การรักษาสมุทรพืชที่ปนเปื้อนในสัตว์ควรมีสารที่ทำให้ระบบจำนำที่ดีซึ่งจะช่วยให้ความเหมาะสมของการเลือกใช้ตัวระบบการนั้นๆ หรือสารเอกสารได้มากๆ ระบบการร่วมกันในการรักษา ซึ่งขึ้นอยู่กับปัจจัยหลักหลายปัจจัย เช่น ลักษณะคุณสมบัติของสารละลายที่ต้องการนำาเข้า ลักษณะคุณสมบัติของสาร ตัวกลางที่ปนเปื้อน บริเวณที่มีการปนเปื้อน ประดิษฐ์การในการนำาเข้า (หลังจากนำาเข้าแล้วจะอย่าง เหลือความเข้มข้นของสารละลายที่ปนเปื้อนในภูมิที่ยอมรับได้หรือไม่) ระยะเวลาในการนำาเข้า การแรงพุ่ม และโรงงานในการนำาเข้า ผลกระทบยิ่งๆ ในระหว่างการนำาเข้าและผลกระทบที่จะต้องมา เช่น การเกิดสารทดหลอกได้ (By-product) จากการนำาเข้าซึ่งอาจเกิดเป็นสารละลายที่มีความเป็นพิษหรือแรงกว่าสารละลายเริ่มต้น การยอมรับจากประชาชนในสัตว์ควรจะต้องเริ่มต้น (Public acceptance) เป็นต้น โดยลักษณะการทำปันเปื้อนจะแบ่งออกเป็น 2 แบบ คือ In situ หรือ Ex situ (อธิบาย, 2554)
1. การบังคับสมการเพื่อกระบวนการทางกายภาพ

การบังคับสมการเพื่อกระบวนการทางกายภาพมีข้อดี คือ กระบวนการบังคับทางกายภาพเป็นการบังคับสมการที่ใช้ระยะเวลาสั้นกว่าการบังคับด้วยกระบวนการทางเคมีและชีวภาพ แต่มีข้อดีและข้อจำกัด ได้แก่

1.1 การบังคับสมการเพื่อขั้นตอนที่ต้องการการลงทุนทางด้านเครื่องมือและอุปกรณ์ต่างๆ ที่เกี่ยวข้องกับการบังคับสูงกว่าทั้งสองขั้นตอน

1.2 การบังคับสมการเพื่อขั้นตอนทางกายภาพด้วยกระบวนการที่ทำให้เกิดสารเกิดอันตรายที่เป็นสารของเคมีที่อยู่ในสภาวะไม่คงที่

1.3 การบังคับสมการเพื่อขั้นตอนทางกายภาพด้วยการควบคุมให้เกิดอนุภาคละเข็มปูนผลผลิต

2. การบังคับสมการเพื่อกระบวนการทางเคมี

การบังคับสมการเพื่อกระบวนการทางเคมีโดยทั่วไปในการบังคับสมการที่เป็นเส้นอยู่ในน้ำ แต่สามารถนำมาประยุกต์ใช้กับการบังคับในรูปแบบของสูง (Soil slurry หรือ Soil suspension) โดยมีหลักการ คือ ทำให้สารเกิดปฏิกิริยาปริมาณมากสูงจริงๆ ทำให้สารอนุภาคมีความแข็งในพื้นที่ ทำให้สารเกิดปฏิกิริยาเพื่อเปลี่ยนคุณสมบัติของสารพิษ และทำให้สารพิษเกิดปฏิกิริยากับสารรันเฟอร์ซ์รูป (Immobilization) โดยปฏิกิริยาที่ใช้ในการบังคับทางเคมี เช่น

2.1 ปฏิกิริยาออกซิเดชัน (Oxidation) อาจเป็นหลักการเลือกอัลคาไลน์ของยอดดิส ให้มีสารเคมีที่เปลี่ยนไปในน้ำออกโดยสารเคมีนี้จะทำหน้าที่เป็นตัวออกซิเดชัน (Oxidizing agent) สำมัก

วิธีนี้จะมีผลประโยชน์ในการลดการปล่อยของโลหะที่เป็นพิษ เช่น การเปลี่ยน Fe^{2+} ซึ่งมีพิษมากไปเป็นสาร Fe^{3+} ซึ่งมีพิษน้อยลง ด้วยการใช้:

2.2 ปฏิกิริยาต่ำสุด (Reduction) เป็นปฏิกิริยาที่มีการวิวัฒนาการเคมีการเปลี่ยนการเปลี่ยนสารของสารพิษไปเป็นสารที่มีอันตรายน้อยลง ลดลงพร้อมต่ำสุด ของสารพิษจะรับ
อิเล็กตรอนจากสารเคมีที่ดีละลายในเชื้อเพลิงเป็นสารเคมีที่ตัวตัวอิสระ (Reducing agent) เช่น การเปลี่ยน Cr⁶⁺ ซึ่งมีพิษมากเป็น Cr³⁺ ด้วย เฟอร์ราซิลเฟด (FeSO₄) ในสภาพที่เป็นกรด

2.3 ปฏิกิริยาไฮโดรคลีช (Hydrolysis) เป็นปฏิกิริยาของเหล็กกับน้ำที่ทำให้สารละลายของเหล็กนี้มีสมบัติเป็นกรดของหรือแอนโซฟรอนทรีอะอมีนาซีดได้แตกต่างออกจากเหล็กแล้วทำปฏิกิริยากระตุ้นได้ H₃O⁺ หรือ OH⁻

3. การบังคับสารพิษโดยกระบวนการทางชีวภาพ (Bioremediation)
การบังคับสารพิษโดยกระบวนการทางชีวภาพหรือ Bioremediation เป็นกระบวนการบังคับสารพิษที่เป็นไปในเส้นทางตามนวัตวิทยาทางชีวภาพ โดยอาศัยความสามารถของชีวที่ใช้ และพืชในการอยู่อาศัยสารพิษเหล่านี้ให้หมดไป (Biodegradation หรือ Mineralization) หรือ การเปลี่ยนรูป (Biotransformation) สารพิษที่มีความเป็นพิษต่อชีวชีวและสิ่งมีชีวิตในสิ่งแวดล้อม ให้มีความสามารถในการเรียกโดยมิได้มีความเป็นพิษ (Detoxification) กระบวนการบังคับสารพิษ โดยกระบวนการทางชีวภาพซึ่งมีชีวและชีวจัดเด็ดเนื้อเยื่อเพื่อทำให้กระบวนการบังคับทางกายภาพ และเคมีได้ตัดต่อกันไป (ตารางที่ 7)

3.1 การบังคับสารพิษโดยไพรโอฟิท (Phytoremediation)
วิธีการกักจักรสารพิษโดยไพรโอฟิท (Phytoremediation) เป็นหนึ่งในกระบวนการพืชที่สัมผัสสารพิษซึ่งเป็นการใช้พืชเพื่อพื้นที่เป็นต้นสิ่งแวดล้อมโดยบังคับสารพิษที่สามารถติดต่อกัน การเปลี่ยนแปลงของสารต่างๆ ในสิ่งแวดล้อมได้ทั้งสารพิษที่อยู่ในรูปสารอินทรีย์และสารเคมีที่อยู่ในน้ำและคืนรวมในการป้องกันและรักษาที่เป็นน้อยลงทุน
การใช้พืชเพื่อพื้นที่พื้นที่เป็นต้นสิ่งแวดล้อมเป็นการใช้กระบวนการที่มีพืชเพื่อพื้นที่เป็นต้นสิ่งแวดล้อม สารพิษ เก็บสารเคมีในเส้นทางที่พืช เพื่อการจัดสรรสารพิษที่เป็นไปในบริเวณที่เป็นไปในเส้นทางให้คงเป็นความเป็นพิษหรือที่ทำให้มีความสามารถติดต่อกันที่ทำให้สามารถลดสารพิษได้ ดังนั้นนักการกักจักรสารพิษโดยไพรโอฟิทเป็นวิธีการที่จะทำให้พืชที่มีความสามารถในสารเคมีที่ไม่ได้ใช้สารเคมีที่มีความสามารถที่ทำได้ในปัจจุบันศักยภาพการศึกษาและวิจัยเกี่ยวกับชนิดของพืชและความสามารถของพืชในการกำจัดสารพิษที่มีมากขึ้น เช่น Read et al. (2008) ได้ทำการศึกษาชนิดสัณฐานของพืชที่ใช้ในการกำจัดสารพิษในน้ำในตอนที่น้ำน้ำในน้ำในน้ำในน้ำน้ำในน้ำในน้ำในน้ำ

ชนิดพืช Brassica napus ส่วน网易ของ Manousaki et al. (2008) ได้ศึกษาการกำจัด Cd ในต้นที่มีการป้องกัน Cd และในสภาพที่มีความความและไม่มีความดีดีที่พืช Tamarix smyrensis การป้องกัน Cd และในสภาพที่มีความความและไม่มีความดีดีที่พืช Tamarix smyrensis การ
พื้นผิวผืนเดียวเลยโดยใช้ฟิช สามารถแบ่งกลไกความสามารถของพืชในการกักจัดสารพิษออกได้เป็น 5 กระบวนการหลัก ได้แก่

3.1.1 Phytoaccumulation หรือ Phytoextraction เป็นกลไกในการกักจัดสารพิษ เช่น สารประกอบมีเริ่มชื่อ โลหะหนัก และธาตุกันนิบบเนท เช่น ยูเรเนียม (Uranium, U) ซีเรียม (Cerium, Ce) เดลโลเรียม (Tellurium, Te) เป็นต้น จากต้นและน้ำโดยการดูดซับ ลำเลียง และเคลื่อนย้ายสารพิษเข้าสู่พืชผ่านทางยาและนำไปสะสมอยู่ในส่วนต่างๆ ของพืช เช่น ราก ในลำต้น และกึ่งกันต่างๆ โดยพืชจะทำให้สารพิษสามารถพิษเหล่านั้นได้ไม่มีการย่อยสลาย ซึ่งอาจเกิดขึ้นจากการที่พิษชนิดนี้ๆ ขาดวิศวกรรมย่อยสลาย (Degradation mechanism หรือ Pathway) ที่เหมาะสมต่อการกักจัดสารพิษเหล่านั้น จากนั้นพืชที่มีการสะสมสารพิษต่างๆ จะต้องถูกนำไปปันสนับด้วยวิธีการต่างๆ ต่อไปได้แก่ การนำไปใส่ การฝังกลบ หรือการย้อมสลายโดยใช้.cnathเรียบเป็นต้น นอกจากการนำไปนำไปแล้ว ในการที่มีปริมาณโลหะหนักที่สะสมอยู่ในพืชเป็นปริมาณมากอาจนำไปที่กระบวนการฟื้นฟูพันส (Recovery/Extraction) ได้หากนักที่นำกลับมาใช้ใหม่ได้
พืชที่จะนำมาใช้ในกระบวนการฟื้นฟูพันสและโลหะหนักตัววิธีนี้ต้องเป็นพืชที่มีความทนทานต่อความเป็นพิษของสารพิษชนิดนี้ๆ และความเป็นพืชที่สามารถเจริญเติบโตอย่างรวดเร็ว มีผล ทนแข็งแกร่งได้รับฟั่นฟูพันสเพื่อพืชที่เป็นสารพิษสารพิษเชิงเคมี และความมีการสะสมสารพิษต่างๆ ในช่วงของ พืชที่มีการเจริญเติบโตได้ไม่ต้องตัดทิ้งขั้น เช่น การสะสมที่เป็นขาว ยอด เป็นต้น นอกจาก แสงต่างๆ เหล่านี้แล้ว ปัจจัยหลัก 2 ปัจจัยที่น่าสนใจในการประเมินและประเมินพันสเกิดประสิทธิภาพ ของการกระบวนการ Phytoaccumulation ของพืชชนิดต่างๆ ได้แก่ ผลผลิตมวลชีวภาพ (Biomass production) และค่า Bioconcentration factor (Bioconversion factor, ค่าอัตราส่วนของความ หนาแน่นของสารพิษที่สามารถสะสมอยู่ในตัวพืชในเกณฑ์ออกได้ของพืชในความหนาแน่นของสารพิษ นั้นในตัวพืช) ซึ่งเป็นค่าที่แสดงให้เห็นว่าพืชชนิดนี้มีความสามารถในการเก็บสะสมสารพิษที่ ปัจจัยในตัวกลางสามารถในเนื้อเยื่อของพืชเพียงใด ซึ่งพืชที่มีความสามารถในการสะสมสารพิษ และมีค่า Bioconcentration factor (BCF) มากกว่า 1 จะถูกเรียกว่าพืช Hyperaccumulators ของสารชนิดนี้ (Bhargava et al., 2012) และสำหรับสารพิษบางชนิดอาจใช้ค่าเพลิงเช่นค่า ความหนาแน่นของสารพิษในเนื้อเยื่อส่วนเหนือพืชต้นส่วนน้ำหนักแห้งของเนื้อเยื่อมีค่าตัวลักษณะพิษชนิดนั้นเป็นพืช Hyperaccumulators ของสารชนิดนี้ๆ ได้เช่นกัน เช่น พืชที่สามารถสะสมสาร Ni Co Cr Cu Al และPb ได้ปริมาณ 0.1% ของน้ำหนักแห้ง พืชที่สามารถสะสมสาร Cd และSe ได้ปริมาณ 1% ของน้ำหนักแห้ง และพืชที่สามารถสะสม Cd และSe ได้ปริมาณ 0.01% ของน้ำหนักแห้ง (Baker and Brooks, 1989; Baker et al., 2000)
ตารางที่ 7 เปรียบเทียบข้อดีและข้อจำกัดของวิธีการบางบัตทางชีวภาพ

<table>
<thead>
<tr>
<th>ข้อดี</th>
<th>ข้อจำกัด</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. สามารถประยุกต์ใช้ในการบางบัตสิ่งแวดล้อมต่างๆได้หลากหลายกว่า (Universal process)</td>
<td>ทางชีวภาพ เมื่อทำการบางบัตทางชีวภาพพืชสู่กับ 2. ความสามารถของจุลินทรีย์และพืชในการช่วยลด 3. เป็นกระบวนการที่สามารถกัดจัดสารเสียได้อย่าง 4. การ (Permanent elimination) ทำปฏิกิริยาการ ย่อยสลายเกิดขึ้นอย่างสมบูรณ์</td>
</tr>
<tr>
<td>3. การติดตาม (Monitoring) การกระจายต่างๆ</td>
<td>5. ต้องใช้กระบวนการบางบัตทางกายภาพและทางที่มีการติดตาม (Monitoring) หรือสายการ 6. เป็นการยอมรับจากประชาชนมากกว่าการใช้กระบวนการอื่นๆ (Positive public acceptance)</td>
</tr>
<tr>
<td>5. อาจทำให้เกิดสารพิษเกิดขึ้นที่ไม่สามารถระบุจุดต้นได้</td>
<td>6. การการควบคุมการติดต่อสารพิษทางกายภาพ</td>
</tr>
</tbody>
</table>

ที่มา: ตัดแปลงจาก (อธิป, 2554)

จากการศึกษาของ Brunetti et al. (2010) พูดว่า Brassica napus มีการสะสมเทียมมิให้ยอดมากกว่าในกระบุการทดลองภายในโรงเรียนและการทดลองปลูกในสถานที่จริง มีค่า Translocation Factor (TF, ปริมาณความสูงโลหะหนักในยอดต่อในใบ) ค่านานจากน้ำหนักแห้ง)
พืช 1 และต่อไปนี้ว่า B. napus เป็น Accumulator species และเมื่อมีการติด B. licheniformis BLMB 1 ลงในต้นพืชว่า B. napus มีการสะสมของโลหะหนักเพิ่มขึ้นทั้งในยอดและราก ใบอ่อนที่รังของ Manousaki et al. (2008) ได้ทำการทดลองโดยให้พืชในกระถางในสภาพสิ่งแวดล้อมเดียวกับพืชที่รังวัดว่าเมื่อทำการเพิ่มความเดือดเพื่อ Tamarix snymensis มีการดูดซึมเหลืองที่มากขึ้นและเพิ่มการสะสมแม่เหล็กทั้งในยอดและราก T. snymensis มีการขับเคลื่อนแม่เหล็กออกจากภายในและมีความเต็มมากขึ้นทำให้ T. snymensis ขับเคลื่อนแม่เหล็กออกจากภายนอกมากขึ้น แต่ในการทดลองที่ความคั่น 3% ต้นพืชตายเพราะความเป็นพืชของเกลือกันยิ่งศูนย์การทดลอง นอกจากนี้ยังมีงานของ Singh et al. (2010) ที่ได้ทำการทดลองการใช้ปิโธเม็ทีนิยมและอินทรีย์เพื่อลดการใช้โลหะหนักจากน้ำเสียของพืชในพื้นที่ได้ หนึ่งในศูนย์การทำการทดลองพบว่าการใช้ปิโธเม็ทีนิยมมีการสะสมของโลหะหนักในลำต้นของพืชน้อยกว่าการใช้ปิโธเม็ทีนิยม และการใช้ปิโธเม็ทีนิยมกับปิโธเม็ทีนิยมทำให้มี Translocation ratio ของแม่เหล็กและสังกะสีในพืชสูง การใช้ปิโธเม็ทีนิยมช่วยเพิ่มพืชทำให้มีค่า Bioconcentration factor ของโลหะหนักทั้งหมด (Cd Zn Cu Pb และCr) ที่ต่ำกว่าที่สูงเมื่อเทียบกับพืชทางด้านซื้อว่า Vibol et al. (2007) ได้รายงานผลกระทบสะสมแม่เหล็กของหญ้าทำาเก็บและหญ้าหลีกเลียในการทดลองด้วยระบบอะไหล่ ตะไคร์ พบว่าแม่เหล็กสะสมแม่เหล็กของพืชทางด้านหญ้าทำาเก็บกว่าหญ้าหลีกเลียค่าสูงกว่าหญ้าหลีกเลีย หญ้าทำาเก็บหญ้าสะสมแม่เหล็กในรากและยอดมากกว่าหญ้าหลีกเลีย

3.1.2 Phytodegradation หรือ Phytotransformation เป็นกระบวนการเปลี่ยนรูปหรือการย่อยสลายสารเคมีที่ถูกนำไปเป็นที่นำพา เป็นกระบวนการที่เกิดขึ้นภายหลังที่สารเคมีได้ถูกดูดซึมจากสฝั่งเส้นลำต้นหรือด้ามพืชแล้วเพิ่มขึ้นสะสมในพืชเพื่อเผาสลายเสียที่อยู่ในเซลล์ของพืชได้สำเร็จแล้วคือ Phytodegradation สามารถแบ่งได้ดังนี้ การย่อยสลายรูปแบบสเปซิฟิค (Transformation) การอยู่ภายใต้กระแส (Partial degradation) การเปลี่ยนรูปและยกเลิกการพืชออกเป็นสัดส่วน (Sequestration) และการย่อยสลายอย่างสมบูรณ์ (Complete degradation หรือ Mineralization) Burken and Schnoor (1997) ได้ทำการศึกษาความสามารถของพืช Hybrid poplar ในการกำจัด Atrazine ที่ติดตั้งในดิน 14C โดยทำการสกัดเสียชีวิตของพืชและนำมาวิเคราะห์ด้วย High Pressure Liquid Chromatography (HPLC) ที่มี UV และ Radiochromatographic detectors จากการศึกษาพบว่าพืช Hybrid poplar มีกระบวนการเคมีขยายของ Atrazine ที่แตก แต่ใน 50 ของการทดลองพบความรับรู้ของสารรองต่ำลงเหลือ 59% และมีสารประกอบอยู่ใน 21% เมื่อทำการทดลองต่อเปลี่ยนวันที่ 80 พืชสามารถประกอบเริ่มต้นในเปลือกอยู่ 10% เมื่อผู้เกษตรปฏิบัติที่เกิดขึ้นมีจำนวนในแบบจำลองทางคณิตศาสตร์ของกลไกการย่อยสลาย การศึกษาพบวันแสงให้
เห็นถึงความสามารถในการลดความเป็นพิษของสารเคมีโดยใช้พืช และแสดงให้เห็นถึงความเป็นไปได้ของการใช้พืชเพื่อป้องกันหินที่เป็นกิจการ Atrazine จากการศึกษาของ Al-Baldawi et al. (2015) พบว่าสารประกอบกั้น Total Petroleum Hydrocarbon (TPH) ในน้ำที่เป็นกิจการน้ำมันเต็มเพาะโดยใช้พืช Scirpus grossus ในระบบ Constructed wetland แบบ pilot-scale ซึ่งมีความชื้นของน้ำมันต่ำ 0%, 0.1%, 0.175% และ 0.25% (V_diesel/V_water) พบร้านในวันที่ 72 ของการทดลองพืชสามารถกั้น TPH ในนุ่มการทดลองที่มีน้ำมันต่ำในกิจการ 0%, 0.1%, 0.175% และ 0.25% ได้ 81.5%, 71.4% และ 66.6% ตามลำดับ และมี TPH สะสมในลำดับและใน 223.56 mg/kg. คิดเป็น 93.72% n-alkanes C20-C34 ดูเป็นประโยชน์มากกว่าพืชที่มีบทบาทในการกั้นพืชเพื่อป้องกันปริมาณสารเคมี

3.1.3 Phytovolatilization เป็นกระบวนการเปลี่ยนแปลงสารเคมีอินทรีย์และโลหะที่ผ่านพืชให้เป็นสารกั้นพืชผักได้ที่มีความเป็นพิษน้อยและละลายออกจากการตั้งพืชฐานในสิ่งแวดล้อม ตัวอย่างเช่น มีการศึกษาเพียงศึกษาพืชและอินทรีย์ที่สามารถเปลี่ยน Selenium ให้เป็นสารเป็น Dimethyl selenide ที่มีความเป็นพิษน้อย จากนั้นเพื่อมี Selenium (Terry et al., 1995) หรือการใช้พืชต่อพืชเป็นการ_compost (Arabidopsis thaliana) ในการทำให้เกิดเป็นปิโตรไลฟ์และอินทรีย์รวม (Watanabe, 1997) นอกจากนี้ยังมีงานวิจัยของ Burken and Schnoor (1999) ที่ได้ทำการตัดพืช Hybrid poplar ในสารละลายที่มีการเปลี่ยนแปลงสารประกอบอินทรีย์จำนวน 11 ชนิด ซึ่งประกอบไปด้วยสารอินทรีย์ที่ระเหยได้จำนวน 6 ชนิดและกีเลย์ได้กีเลย์จำนวน 5 ชนิด โดยทำการตัดแผนการเปลี่ยนแปลงและการเปลี่ยนรูปของสารโดยใช้น้ำ 14°C จากการศึกษาพบว่าพืชน poplar สามารถดูแลเช่น Benzene TCE Toluen Ethylbenzene และ m-Xylene และระเบียบสารเหล่านี้ได้ในปริมาณที่น้อยก้ากากันไป และพบว่าในสารที่มีความเข้มข้นสูงจะทำให้เกิดการระเหยได้ดี สำหรับการศึกษาประสิทธิภาพในการเกิด Phytovolatilization ของสารกลุ่ม Organochlorines (OCs: 1,4-dichlorobenzene (DCB) 1,2,4-trichlorobenzene (TCB) และ γ-hexachlorocyclohexane (γ-HCH) ที่ติดตลาดด้วยสาร 14°C ด้วยพืช Phragmites australis ในระบบTEGRAPHของ San Miguel et al. (2013) พบว่าเมื่อเวลาผ่านไป 7 วัน พืชสามารถดูแลเช่นสาร OCs โดยที่มีมีมีผลเช่นพืชทำให้Bioconcentration factors ของสาร DCB TCB และ γ-HCH มีค่าลดลง 14 19 และ 15 ตามลำดับ และมีการระเหยที่สามารถลดจากบรรจุอยู่ดีเพิ่มขึ้นด้วยการควบคุมได้กิจการ Solubility และ Volatility ของสาร OCs นอกจากนี้ยังพบการเคลื่อนย้ายของสารที่ผ่านพืชเกิดขึ้นได้ผ่านสารประกอบในน้ำ Xylem และ Vapor fluxex ซึ่งส่งผลต่อการเกิดการระเหยของสารประกอบที่ปรับผิวในและการเกิด Phytovolatilization, ส่วนงานของ Lin and Terry (2003) ได้ทำการติดตามการเปลี่ยนแปลงสี่จากทำการทำเอกสารสิ่งที่มีการเปลี่ยน Selenium (Se) ของพืช 10 ชนิดโดยใช้ระบบบัตรประดิษฐ์ (Wetland) โดยใช้การศึกษาตั้งแต่เดือนพฤศจิกายน 1997 ถึงเดือนธีนคม 1999 ผลการทดลองพบว่า Se สำหรับอยู่จะลดลงอยู่
ปริมาณตะกอนตันท่องวัน และมีเพียง 5% สะสมอยู่ในเนื้อเยื่อพืช สำหรับการระเหยของ Se จะเกิดขึ้นมากในพืชที่ทดลองที่ลูกเห็บ Rabbitfoot (Polypogon monspeliensis (L.) Desf.) ภายในระยะเวลา 2 ปีพบว่า Se ในเนื้อทำให้เกิดการระเหยออกจาพืชถึง 9.4% โดยที่การระเหยจะเกิดขึ้นในช่วงฤดูใบไม้ผลิและฤดูร้อนมากกว่าช่วงฤดูใบไม้ร่วงและฤดูหนาว

3.1.4 Phytoextraction เป็นวิธีการที่เหมาะสมสำหรับการรับรักสารพิษและโลหะหนักที่เกิดขึ้นได้ยาก โดยที่พืชจะทำหน้าที่เสมือนกับจุลินทรีย์ในต้นที่อาศัยอยู่ในบริเวณพืชโดยกระทำการหลั่งสารเคมีออกมาจากพืชหรือทำการเตรียมสารพิษและโลหะหนัก (Immobilization) ไปในบริเวณรอบ ๆ ขาดพระพิพิธเพื่อไม่ให้ผ่านเข้าสู่ระบบออกไปหรือเกิดการเร่งการย้ายออกจากสารพิษ เหล่านี้ วิธีการนี้มีเป็นการสร้างความเสียหายให้แก่สารพิษที่ไปเก็บในสิ่งแวดล้อมโดยการเปลี่ยนรูปสารพิษให้กลายเป็นเนื้อเยื่อพืชที่ปลอดภัยระหว่างที่ถูกเคลียร์ออกหมด ซึ่งเป็นกระบวนการที่เกี่ยวข้องกับ Rhizofiltration และRhizostimulation

กระบวนการ Rhizofiltration หรือเรียกว่ากระบวนการกรองด้วยพืชและจุลินทรีย์ปรับปรุงรัก

รากพืช เป็นกระบวนการรับรักสารพิษจากแหล่งน้ำโดยอาศัยการดูดซับสารพิษ เช่น สารโลหะ
othrive หรือโลหะหนัก โดยจากพืชหรือจุลินทรีย์ที่อาศัยอยู่ที่รากพืชหรือที่ส่วนของรากร่วมกัน การใช้กระบวนการ Rhizofiltration ในการรับรักสารพิษช่วยให้จุลินทรีย์สามารถขึ้นที่ที่สูงน้ำตามธรรมชาติ (Wetland) หรือในนิคมที่เกิดขึ้น (Constructed wetland) โดยพืชที่เรียกว่าตีกลับในน้ำที่สูงน้ำเหล่านี้

กระบวนการ Rhizostimulation เป็นกระบวนการกระตุ้นการเจริญเติบโตของพืชโดยอาศัยจุลินทรีย์ที่อาศัยอยู่ในบริเวณพืช โดยกลุ่มจุลินทรีย์เหล่านี้อาจเรียกว่าตีกลับในน้ำที่เกิดขึ้นพร้อมกับการเจริญเติบโตของพืช (Plant Growth Promoting Rhizobacteria) หรือเรียกว่ากลุ่มแบคทีเรียที่มีต่อการเจริญเติบโตของพืช PGPR โดยที่กลุ่มแบคทีเรียที่มีต่อการเจริญเติบโตของพืชที่ประกอบด้วยแบคทีเรีย
หลากหลายสายพันธุ์ โดยสามารถแบ่งออกได้เป็น 2 ประเภทหลักคือแก่ กลุ่มแบคテเรีย PGPR ที่อาศัยรวมกันแบบพากันพืช (Symbiosis) แบคทีเรียกลุ่มนี้สามารถถูกต้อนซึ่งกันและกันเพื่อให้เกิดและกลุ่มแบคทีเรีย PGPR ที่ใช้เป็นแบกซิม (Free-living bacteria) ซึ่งแบคทีเรียกลุ่มนี้จะอาศัยอยู่บนพื้นผิวของพืช

ระบบกักเก็บน้ำด้วยพืชพรรณ (Bioretention หรือ Rain gardens)

ระบบกักเก็บน้ำด้วยพืชพรรณ (Bioretention หรือ Rain gardens) เป็นการออกแบบระบบการจัดการน้ำฝนรวมกับการใช้พืชพรรณเพื่อรับสภาพภูมิทัศน์ของชุมชนเมือง ที่อยู่อาศัย ลานจอดรถและบริเวณถนน โดยเน้นการออกแบบที่จะให้มีความสามารถทางภูมิทัศน์รวมกับการใช้ประโยชน์เพื่อกักเก็บและบ vara น้ำฝนในระดับผิวถึงระดับล่าสุดที่จะเรียกได้ว่าบัวต้นหรือสูงระดับน้ำตามมาตรฐาน (USEPA, 1983) ระบบกักเก็บน้ำด้วยพืชพรรณสามารถเพิ่มพื้นที่สีเขียวให้กับชุมชนเมือง ช่วยเพิ่มอากาศและลดผลกระทบที่เกิดจากการจะติดต่อและยังสามารถช่วยลดคูณภูมิในพื้นที่ชุมชนเมืองที่มีปัญหาความร้อน (Urban heat island) จากการการบ่นของพืชที่อยู่ในระบบ โดยภายในระบบกักเก็บน้ำด้วยพืชพรรณจะมีกลไกการกักจัดสารพิษเฉพาะกลไกได้มาก ความสามารถของพืชที่ใช้ในระบบและจุดเด่นที่สำคัญคือการคุณภูมิที่ใช้ในระบบ ซึ่งส่งผลต่อการอุดมสมบูรณ์กักเก็บน้ำฝนที่ต้องทำให้ได้มากสามารถกักเก็บน้ำฝนจากพื้นผิวที่ชุมชนเมืองที่มีปัญหาความร้อน (Urban heat island) จากการการบ่นของพืชที่อยู่ในระบบ โดยภายในแบบกักเก็บน้ำด้วยพืชพรรณจะมีกลไกการกักจัดสารพิษเฉพาะกลไกได้มาก ความสามารถของพืชที่ใช้ในระบบและจุดเด่นที่สำคัญคือการคุณภูมิที่ใช้ในระบบ ซึ่งส่งผลต่อการอุดมสมบูรณ์กักเก็บน้ำฝนที่ต้องทำให้ได้มากสามารถกักเก็บน้ำฝนจากพื้นผิวที่ชุมชนเมืองที่มีปัญหาความร้อน (Urban heat island) จากการการบ่นของพืชที่อยู่ในระบบ โดยภายในระบบกักเก็บน้ำด้วยพืชพรรณจะมีกลไกการกักจัดสารพิษเฉพาะกลไกได้มาก ความสามารถของพืชที่ใช้ในระบบและจุดเด่นที่สำคัญคือการคุณภูมิที่ใช้ในระบบ ซึ่งส่งผลต่อการอุดมสมบูรณ์กักเก็บน้ำฝนที่ต้องทำให้ได้มากสามารถกักเก็บน้ำฝนจากพื้นผิวที่ชุมชนเมืองที่มีปัญหาความร้อน (Urban heat island) จากการการบ่นของพืชที่อยู่ในระบบ โดยภายในแบบกักเก็บน้ำด้วยพืชพรรณจะมีกลไกการกักจัดสารพิษเฉพาะกลไกได้มาก ความสามารถของพืชที่ใช้ในระบบและจุดเด่นที่สำคัญคือการคุณภูมิที่ใช้ในระบบ ซึ่งส่งผลต่อการอุดมสมบูรณ์กักเก็บน้ำฝนที่ต้องทำให้ได้มากสามารถกักเก็บน้ำฝนจากพื้นผิวที่ชุมชนเมืองที่มีปัญหาความร้อน (Urban heat island) จากการการบ่นของพืชที่อยู่ในระบบ โดยภายในระบบกักเก็บน้ำด้วยพืชพรรณจะมีกลไกการกักจัดสารพิษเฉพาะกลไกได้มาก ความสามารถของพืชที่ใช้ในระบบและจุดเด่นที่สำคัญคือการคุณภูมิที่ใช้ในระบบ ซึ่งส่งผลต่อการอุดมสมบูรณ์กักเก็บน้ำฝนที่ต้องทำให้ได้มากสามารถกักเก็บน้ำฝนจากพื้นผิวที่ชุมชนเมืองที่มีปัญหาความร้อน (Urban heat island) จากการการบ่นของพืชที่อยู่ในระบบ โดยภายในแบบกักเก็บน้ำด้วยพืชพรรณจะมีกลไกการกักจัดสารพิษเฉพาะกลไกได้มาก ความสามารถของพืชที่ใช้ในระบบและจุดเด่นที่สำคัญคือการคุณภูมิที่ใช้ในระบบ ซึ่งส่งผลต่อการอุดมสมบูรณ์กักเก็บน้ำฝนที่ต้องทำให้ได้มากสามารถกักเก็บน้ำฝนจากพื้นผิวที่ชุมชนเมืองที่มีปัญหาความร้อน (Urban heat island) จากการการบ่นของพืชที่อยู่ในระบบ โดยภายใน
ตามที่ได้ออกแบบ (สารคดีและคณะ, 2555) ประเทศญี่ปุ่นระบุก็เก็บน้ำแย่งที่พื้นที่น้ำประทานมีประโยชน์ต่างๆ

1. เพิ่มพื้นที่รับน้ำ ลดอัตราและปริมาณน้ำไหลป่า (Storage Increasing and Runoff Reducing) โดยการปรับปรุงพื้นที่เพื่อให้เป็นพื้นที่ที่มีพื้นที่น้ำประทานค่าให้เกิดการเพิ่มประสิทธิภาพการไหลผ่านพื้น (Coefficient of runoff; C) ซึ่งถ้าน้ำฝนได้มากกว่า C ต่อแสดงว่าพื้นที่นั้นมีความสามารถในการลดอัตราปริมาณน้ำฝนผ่านพื้นผิวได้สูง โดยพื้นที่สวนรีดและพื้นที่ที่ล้างน้ำจะต้องมีค่า C ที่ร้อยละ 0.95 แต่พื้นที่ที่เป็นป่าแต่จะมีค่า C ระหว่าง 0.05-0.35 ซึ่งขึ้นอยู่กับความลาดชันของพื้นที่

2. ลดความสูงทางน้ำ (Reduction of Water Pollutants) ระบบกักเก็บน้ำด้วยพื้นที่น้ำประทานสามารถช่วยลดภูมิระยะและลดปริมาณโลหะหนักที่ปนเปื้อนในน้ำสำหรับการบริโภครับประทานและทางน้ำได้ ซึ่งเมื่อนำค่าใช้จ่ายในการใช้ระบบปนเปื้อนน้ำเสียมาเปรียบเทียบกับการใช้ระบบกักเก็บน้ำนั้นส่งผลการลดการช่วยลดความสูงทางน้ำในระบบกักเก็บน้ำด้วยพื้นที่น้ำประทานสามารถลดค่าใช้จ่ายได้ถึง 50-80%

3. การจัดการปัญหาหน้าที่มอขจุน (Flood Management) ระบบกักเก็บน้ำด้วยพื้นที่น้ำประทานช่วยลดการไหลของน้ำจากแหล่งสู่ระบบท่องระบายน้ำของเมือง ซึ่งเป็นการกักเก็บน้ำแบบชั่วคราวเป็นการบรรเทาปัญหาหน้าที่มอขจุนได้เป็นอย่างดี

4. เพิ่มปริมาณน้ำได้ดี (Enhancement of Potable Water) เมื่อระบบกักเก็บน้ำด้วยพื้นที่น้ำประทานเกิดการกักเก็บน้ำจะส่งผลให้น้ำที่ถูกเก็บก็เก็บน้ำเพิ่มขึ้นได้โดยมีกำลังของน้ำเพิ่มขึ้น จะเพิ่มให้ปริมาณน้ำได้ดีเพิ่มขึ้น ลดปัญหาการเกิดกิจกรรมในบางพื้นที่ที่ประชาชนนับถือน้ำได้ดีมากเป็นแหล่งน้ำเพื่อการสุขภาพและบริโภคน้ำ

5. ลดผลกระทบอากาศ (Reduction of Air Pollution) ดันน้ำพื้นที่ปนเปื้อนในระบบกักเก็บน้ำด้วยพื้นที่น้ำประทานสามารถช่วยลดการสูญเสียอากาศได้ โดยเฉพาะภูมิอากาศในบางย่านและยังช่วยลดความร้อนในระดับอากาศผ่านการควบคุมที่สูงในช่วงเวลากลางวัน

6. เพิ่มมูลค่าการสูญเสีย (Value add of Aesthetic) การมีพื้นที่เขตพื้นที่นี้จะทำให้เกิดความน่าสนใจ ซึ่งเป็นการสร้างความผูกพันด้านสุขภาพที่ดีของประชาชนทำให้ลูกค้าจัดซื้อกลับซื้อ ประชาชนดีขึ้น สำหรับผลิตภัณฑ์ในการทำงานของคมเมืองและประสิทธิภาพในการพัฒนาเมืองให้สวยงาม
บทที่ 3
อุปกรณ์และวิธีการวิจัย

ในการวิจัยได้แบ่งการทดลองออกเป็น 2 ชิ้นทดลอง โดยการทดลองแรกจะเป็นการคัดเลือกชนิดของหญ้าที่เหมาะสมในการทดลองโดยใช้ระบบที่มีความเหมาะสมกับการใช้ประโยชน์สัตว์ที่เลี้ยง หลังจากนั้นจะทำการคัดเลือกหญ้าที่มีความเหมาะสมในการทดลองได้มากที่สุดจากการทดลองที่ 1 มาใช้ในการทดลองที่ 2 ซึ่งเป็นการใช้พืชได้ร่วมกับการทดลองการกระทำชีวภาพ

ขั้นตอนการวิจัย

ขั้นตอนการทดลองที่ 1

ในการทดลองที่ 1 จะมีทรัพย์สินทั้งหมด 21 ทรัพย์สิน โดยแบ่งเป็นสุกการทดลองเพื่อพยากรณ์ความสามารถในการสะสมผลิตภัณฑ์ของหญ้า 12 ทรัพย์สิน (ตารางที่ 8) และข้อการทดลองเพื่อวัดปริมาณดุสสุริยะของหญ้า 9 ทรัพย์สิน โดยมีการทดลองใช้ทรัพย์สินเดียวกันหรือทรัพย์สินเดียวกันที่มีชุดการทดลองเพื่อความสามารถในการสะสมผลิตภัณฑ์ของหญ้า (ตารางที่ 8) เช่นเดียวกับการทดลองควบคุมที่ไม่มีหญ้า ในการทดลองใช้หญ้า 3 ชนิด ได้แก่ หญ้าจีนปู (Zozisia japonica) หญ้าแม่เดย์ (Axonopus compressus) P.Beauf. และหญ้าแม่เดย์ (Zozisia matrella L.) Merrill โดยทำการทดลองเป็นระยะเวลา 15 วันในระบบโคโลฟิลด์ (ภาพที่ 1) ซึ่งใช้หน้าที่เป็นตัวกลางวิจัย แต่ต่อเนื่องมาสู่การทดลองที่ 2 ที่จะมีการทดลองสุกสารได้ต่างๆ ซึ่งแสดงในตารางที่ 9 และไม่มีการสะสมความชุ่มชื้นและของชีว แผ่นสังเคราะห์ นอกจากนี้จากการทดลองในนี้ที่มีผลการสัมพันธ์ที่ไม่มีผลต่อผลิตภัณฑ์อย่างที่มีการทดลองโดยใช้แอลลิคิวที่ความเข้มข้น 2 สำ คือ 1 และ 3 มก./ล. ในการทดลองจะใช้หญ้า 1 ชุดการทดลองแต่ละชุดยังเป็น 60 ต้นที่มีขนาดและความสูงเท่ากัน ซึ่งใน 1 ชุดการทดลองจะแบ่งออกเป็น 3 กลุ่มชั่วโมงไม่ถึงน้ำ ผลิตภัณฑ์ 3 กลุ่ม โดยมีหญ้าจำนวนมาก 20 ต้นต่อ 1 กลุ่ม ในแต่ละระยะของการทดลอง เดียวกันจะใช้สำหรับเก็บตัวอย่างในชั่วโมงที่ 5, 10 และ 15 ตามลำดับ โดยจะมีสถานการณ์ที่ความรุ ยวิ่งไปเพื่อให้หญ้าโหนบนน้าสังเคราะห์ ทำการเก็บตัวอย่างนั้น ต่ออย่างละเอียดและลึกของหญ้าทั้ง 3 ชนิด เพื่อนำมันไปวิเคราะห์หาปริมาณแคลอรี่น์ ความสูงของและความยาวจาก penetrometer และด่ายภาพหญ้าใน วันที่ 1, 5, 10 และ 15 ของการทดลอง หลังจากนั้นจะทำการวัดปริมาณดุสสุริยะก่อนและหลังการทดลองของฤทธิ์แม่เพื่อให้ทราบถึงการทดลองเพื่อวัดปริมาณผลิตภัณฑ์ สำหรับแผนและขั้นตอนในการทดลองและแผนภาพที่ 2 และ 3 ตามลำดับ
ตารางที่ 8 สมการของทริคแม่น้ำในการทดลองที่ 1

<table>
<thead>
<tr>
<th>ทริคแม่น้ำ</th>
<th>ความเข้มข้นของแคดเมียม (มก./ล.)</th>
<th>อักษรย่อ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ชุดควบคุมไม่มีแคดเมียม</td>
<td>0</td>
<td>ContCd0</td>
</tr>
<tr>
<td>1</td>
<td>ContCd1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ContCd3</td>
<td></td>
</tr>
<tr>
<td>หญ้าแมลงเขียว</td>
<td>ชุดควบคุม</td>
<td>0</td>
</tr>
<tr>
<td>ทริคแม่น้ำ</td>
<td>1</td>
<td>MCd1</td>
</tr>
<tr>
<td>ทริคแม่น้ำ</td>
<td>3</td>
<td>MCd3</td>
</tr>
<tr>
<td>หญ้าม้วนสั้น</td>
<td>ชุดควบคุม</td>
<td>0</td>
</tr>
<tr>
<td>ทริคแม่น้ำ</td>
<td>1</td>
<td>NCd1</td>
</tr>
<tr>
<td>ทริคแม่น้ำ</td>
<td>3</td>
<td>NCd3</td>
</tr>
<tr>
<td>หญ้าที่รุ่น</td>
<td>ชุดควบคุม</td>
<td>0</td>
</tr>
<tr>
<td>ทริคแม่น้ำ</td>
<td>1</td>
<td>JCd1</td>
</tr>
<tr>
<td>ทริคแม่น้ำ</td>
<td>3</td>
<td>JCd3</td>
</tr>
</tbody>
</table>

ภาพที่ 1 ระบบโลดโลงโรคของการทดลองที่ 1
ตารางที่ 9 ส่วนผสมในน้ำแล้งของสัตว์ราชา

<table>
<thead>
<tr>
<th>สารประกอบของน้ำแล้งของสัตว์ราชา</th>
<th>สารเคมี</th>
<th>ความเข้มข้น (มก./ล.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>สารอาหาร</td>
<td></td>
<td></td>
</tr>
<tr>
<td>น้ำอัดrov</td>
<td>Sodium nitrate (NaNO₃)</td>
<td>12</td>
</tr>
<tr>
<td>ในโคโลเจน</td>
<td>Glycine (NH₂CH₂COOH)</td>
<td>21</td>
</tr>
<tr>
<td>ฟอสفورีส</td>
<td>Sodium hydrogen phosphate</td>
<td>5.191</td>
</tr>
<tr>
<td>(Na₃HPO₄·7H₂O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>โลหะหนัก</td>
<td></td>
<td></td>
</tr>
<tr>
<td>แคดเมียม</td>
<td>Cadmium sulfate (CdSO₄·8H₂O)</td>
<td>6.84</td>
</tr>
<tr>
<td>ของแข็ง</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ดินร่อน่นแย่งแย่ง 0.25 มิลลิเมตร</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>ควันคูบูน</td>
<td>Calcium chloride (CaCl₂)</td>
<td>120</td>
</tr>
</tbody>
</table>

ที่มา: ตัดแปลงจาก Devis et al. (2001)

ภาพที่ 2 แผนการทดลองในการทดลองที่ 1

1. หญ้ามานาเซี้ย (Avonopus comuressus P.Beaup)
2. หญ้ากูญญ (Zoysia japonica)
3. หญ้าบานเหล็ก (Zoysia matrella (L.) Merrill)

ผลตอบสนองสามารถในการก้าจัดแสดงเนื้อในน้ำฝนของสัตว์ราชาตัวย่อยแบบโดยใดโรคพืช

คัดเลือกหญ้าที่มีความสามารถในการก้าจัดแสดงเนื้อในน้ำฝนของสัตว์ราชา

1. ความสามารถในการสะสมแสดงเนื้อ
2. ลักษณะทางกายภาพ
 (ความสูงของและความยาวราคที่เพิ่มขึ้น)
ภาพที่ 3 ขั้นตอนในการเตรียมตัวอย่างผู้ในการทดลองที่ 1

ขั้นตอนการทดลองที่ 2

ในขั้นตอนที่ 2 จะทำการคัดเลือกผู้ที่มีความสามารถในการสะสมแคลเซียมอยู่ได้จากที่สุดจากผลการทดลองที่ได้จากการทดลองที่ 1 โดยในขั้นตอนนี้จะเป็นการใช้ผู้ชายชนิดต่างๆ ร่วมกับระบบการกรองของซิลิโอต่วน โดยจะแบ่งออกเป็น 4 ห้องแยกต่างกัน ตั้งแต่ห้องที่ 10 สู่ห้องที่ 1 โดยการทดลองนี้จะเป็นผู้ชายไทยของสิ่งแวดล้อม (ตารางที่ 8) ที่มีการเติมและไม่เติมแคลเซียม ในปริมาณ 40 ล. ภายใน 6 ชั่วโมงต่อวันเป็นระยะเวลานาน 30 วัน โดยใช้หัวหยดที่ควบคุมอัตราการหยดได้ (ภาพที่ 4) ในการศึกษาจะทำการเก็บตัวอย่างน้ำทุก 3 วัน เพื่อวิเคราะห์ค่าการมีเดอร์ส์ตั้งต่อไปนี้ ของซิลิโอต่วน (Suspended Solid) ซีโอดี (Chemical Oxygen Demand) ในโครงพื้นที่ (Total Kjeldahl Nitrogen) ความเป็นกรดด่าง (pH) ในเดอร์ (Nitrate) และฟอสโฟทีท (Phosphate) และจะทำการเก็บตัวอย่างน้ำในวันที่ 1 วันที่ 15 และวันที่ 30 เพื่อวิเคราะห์ที่ปริมาณแคลเซียมที่ลงเหลือในน้ำ นอกจากนี้จะทำการเก็บตัวอย่างไข่เพื่อทำการวิเคราะห์ควบคุมปริมาณ (pH) ความชื้น (Moisture) ในโครงพื้นที่ (Total Kjeldahl Nitrogen) ในดีน ฟอสโฟทีที่เป็นประโยชน์ (Available Phosphorus) อินทรีย์คาร์บอน (Organic carbon) ค่าการแลกเปลี่ยนประจุบวก (Cation Exchange
ตารางที่ 10 ลักษณะของทรัพยากรในกรณีทดลองที่ 2

<table>
<thead>
<tr>
<th>ทรัพยากร</th>
<th>หน้า</th>
<th>ลำดับ</th>
<th>มี</th>
<th>ไม่มี</th>
<th>มีแคเดียม</th>
<th>ไม่มี</th>
<th>แคเดียม</th>
<th>ลักษณะย่อย</th>
</tr>
</thead>
<tbody>
<tr>
<td>ทรัพยากรที่ 1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NGCd0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ทรัพยากรที่ 2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>GCd0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ทรัพยากรที่ 3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NGCd3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ทรัพยากรที่ 4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>GCd3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ภาพที่ 4 (ก) แบบจำลองชั้นทราย และ (ข) ระบบการกรองทางชีวภาพของการทดลองที่ 2

คุณสมบัติของน้ำไหลของสังเคราะห์

น้ำไหลของสังเคราะห์ที่ใช้ในการศึกษาประกอบไปด้วยสารอาหารจำพวกโปรตีนและฟอสเฟต สำหรับน้ำเดิมมักมีแคเดียมและสารอาหารจำพวกที่เป็นตัวเหนียวผูและของผงเลือดที่มุกภูมิน้ำไหลของสังเคราะห์ ซึ่งมีสารเคมีที่ใช้และอัตราส่วนที่ได้กล่าวไว้ในตารางที่ 8 โดยการทดลองที่
1 จะไม่มีการใส่ปุ๋ยในน้ำ สำหรับการทดลองที่ 2 จะทำการเตรียม Stock solution (มีแค่เมเปียวและไม่มีแคเปียม) ที่มีความเข้มข้น 1,000 เท่า ในบริการ 1 ลิตร โดยทำการแช่สารอาหารทุกตัวในน้ำหนัก 1,000 เท่า (ยกเว้นติ๊ดที่อ่อน manslaughter 0.25 มม. ที่จะใส่น้ำหนักต่อบริการน้ำสั่งเครื่อง 120 ลิตร และแยกใส่หลังจากเก็บตัวอย่างน้าส่งเครื่องที่ไม่มีปุ๋ยแล้ว)

ตัวอย่างที่ใช้ในการทดลอง

สายพันธุ์ของหญ้าที่ใช้ในการทดลอง 3 ชนิด ได้แก่ หญ้าปลูปุ่น (Zoysia japonica) หญ้ามานาแลเชียว (Axonopus compuressus P.Beaup) และหญ้ามะเวลน้อย (Zoysia matrella (L.) Merrill) แสดงในภาพที่ 5.

ภาพที่ 5 หญ้าที่ใช้ในการทดลองที่ 1 และ 2 ได้แก่ (ก) หญ้าปลูปุ่น (Zoysia japonica) (ข) หญ้ามานาแลเชียว (Axonopus compuressus P.Beaup) และ (ค) หญ้ามะเวลน้อย (Zoysia matrella (L.) Merrill)

วิธีการเก็บตัวอย่าง

1. การเก็บตัวอย่างน้า

การเก็บตัวอย่างน้าในการทดลองที่ 1 จะเก็บตัวอย่างน้าทุกๆ 5 วัน ในบริการ 50 ลิตร เพื่อทำการวิเคราะห์ค่าความเข้มข้นของแคเปียม สำหรับการทดลองที่ 2 จะทำการเก็บน้าทุกๆ 3 วัน ตั้งแต่น้ำเข้าระบบถึงเมื่อน้ำออกจากระบบถึง โดยจะเก็บน้าตัวอย่างประมาณ 600 ลิตร และเก็บไว้ที่อุณหภูมิ 4°C เพื่อทำการวิเคราะห์ค่าพารามิเตอร์ต่างๆ ตั้งแต่ได้กล่าวไว้แล้วข้างต้น

2. การเก็บตัวอย่างพืช

ในการทดลองที่ 1 ทำการเก็บตัวอย่างพืชน้าจำนวน 20 ต้นทุกๆ 5 วัน โดยเก็บตัวอย่างพืชมาถึงที่ความสะอาด เจาะให้เร็ว และทำการแยกส่วนของต้นพืชและใบออกใส่ในถุงยะายนุ่มที่ใส่น้ำอุณหภูมิ 90°C เป็นเวลา 24 ชั่วโมง หรือจนกว่าตัวอย่างพืชจะแห้ง จากนั้นนำมาจากยังตัว ให้ไปในถิ่นลักษณะเค้นปูดและเทอร์โบในถังที่มี水量น้ำร้อน ทำการเก็บเป็นสัดส่วนยาวคว้างมีความเข้มข้นอย่างอื่นของแคเปียม ทำการเก็บในสัดส่วนเพื่อนำมาวิเคราะห์ค่าความเข้มข้นของโรไฟลด์ โดยทำการตัดในหญ้าปลูปุ่นกล้าง เจาะให้แท้
แล้วสุ่มตัดชิ้นน้ำหนักเพื่อนำมาวิเคราะห์ความเข้มข้นของโลหะปีนี้ต่อไป สำหรับการทดลองที่ 2 จะทำการเก็บตัวอย่างพร้อมที่มีที่เก็บการทดลองที่ 1

3. การเก็บตัวอย่างดิน

ทำการเก็บตัวอย่างดินโดยเก็บตัวอย่างดินจากพื้นที่ลึกถึงประมาณ 15 ซม. จำนวน 3 จุด เพื่อให้ได้ดินหนักประมาณ 1 กก. แล้วนำมาผสมผงเข้ากันเป็นเนื้อเดียวกัน โดยที่สัดส่วนและแล้วนำไปวิเคราะห์ตามวิธีต่างๆ ตั้งแต่ได้ผลสำเร็จที่ข้างต้น (การทดลองที่ 2)

อุปกรณ์ เครื่องมือและสารเคมี

สำหรับรายละเอียดของเครื่องมือ อุปกรณ์ และสารเคมีที่ใช้ในการทดลองจะแสดงในตารางที่ 11 และ 12

ตารางที่ 11 เครื่องมือและอุปกรณ์ที่ใช้ในการทดลอง

<table>
<thead>
<tr>
<th>อุปกรณ์</th>
<th>บริษัท (รุ่น)</th>
<th>ประเทศ</th>
</tr>
</thead>
<tbody>
<tr>
<td>เครื่องวัดค่า pH (pH meter)</td>
<td>Eutech instrument (pH Testr 30)</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>เครื่องวัดค่าดูดกลืนแสง (Spectrophotometer)</td>
<td>Thermo scientific (GENESYS 20)</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>ฟิล์มألعابการ</td>
<td>YAMANO (AP-10)</td>
<td>Japan</td>
</tr>
<tr>
<td>เครื่องชั้นจี้ยอด 2 แห่ง (Balance)</td>
<td>Mettler Toledo(PL602-L)</td>
<td>Switzerland</td>
</tr>
<tr>
<td>เครื่องชั้นจี้ยอด 4 แห่ง (Balance)</td>
<td>Sartorius (BSA224S-CW)</td>
<td>Spain</td>
</tr>
<tr>
<td>เตาอบความร้อน (Hot plate)</td>
<td>IKA (C-MAG HS7)</td>
<td>Malaysia</td>
</tr>
<tr>
<td>เครื่องลดความชื้น (Desiccator)</td>
<td>AVANTA</td>
<td>U.K.</td>
</tr>
<tr>
<td>เตาเผา (Furnace)</td>
<td>Carbolite (CWF 1200)</td>
<td>U.K.</td>
</tr>
<tr>
<td>ผุ้อบอบแห้ง (Hot air oven)</td>
<td>Binder (MUA-41/200)</td>
<td>Germany</td>
</tr>
<tr>
<td>ดิสซิเคเตอร์ (Desiccator)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>อ่างน้ำให้ความร้อน (Water bath)</td>
<td>Memmert (D-91126)</td>
<td>Germany</td>
</tr>
<tr>
<td>เลี้ยงย่อย</td>
<td>BUCHI (K-424)</td>
<td>Switzerland</td>
</tr>
<tr>
<td>เครื่องดูดไอกอร์ (Scrubber)</td>
<td>BUCHI (B-414)</td>
<td>Switzerland</td>
</tr>
<tr>
<td>เครื่องย้อมน้ำ (Distillation Unit)</td>
<td>BUCHI (K-350)</td>
<td>Switzerland</td>
</tr>
<tr>
<td>เครื่องวัดค่าดูดกลืนแสง Hach</td>
<td>Hach (ODYSSEY)</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Substance</td>
<td>Brand/Supplier</td>
<td>Country</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1,10-Phenanthroline Hydrate (C_{12}H_{8}N_{2}H_{2}O)</td>
<td>QREC</td>
<td>New Zeland</td>
</tr>
<tr>
<td>Acetic acid (CH_{3}COOH) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Acetic Acid (CH_{3}COOH) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Acetone (CH_{3}COCH_{3}) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Ammonium Acetate (CH_{3}COONH_{4}) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Ammonium Fluoride (NH_{4}F) AR. Grade</td>
<td>WWR Chemicals</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Ammonium Iron (II) Sulfate hexahydrate</td>
<td>Merck</td>
<td>Germany</td>
</tr>
<tr>
<td>(NH_{4}){2}Fe(SO{4}){2}.6H{2}O AR. Grade</td>
<td>Ajax</td>
<td>Australia</td>
</tr>
<tr>
<td>Ammonium MolybdateTetrahydrate</td>
<td>Ajax</td>
<td>Australia</td>
</tr>
<tr>
<td>((NH_{4}){6}Mo{7}O_{24}.4H_{2}O) AR. Grade</td>
<td>Chem supply</td>
<td>Australia</td>
</tr>
<tr>
<td>Ascorbic acid (C_{6}H_{8}O_{6}) AR. Grade</td>
<td>Merck</td>
<td>Germany</td>
</tr>
<tr>
<td>Boric acid (H_{3}BO_{3}) AR. Grade</td>
<td>Fisher</td>
<td>U.K.</td>
</tr>
<tr>
<td>Bromocresol Green</td>
<td>Fisher</td>
<td>U.K.</td>
</tr>
<tr>
<td>Cadmium solution 1,000 ppm (CdHNO_{3}) AR. Grade</td>
<td>Fisher</td>
<td>U.K.</td>
</tr>
<tr>
<td>Cadmium Sulphate Hydrate (CdSO_{4}.8H_{2}O) AR. Grade</td>
<td>LobaChemie</td>
<td>India</td>
</tr>
<tr>
<td>Calcium Chloride (CaCl_{2}) AR. Grade</td>
<td>QREC</td>
<td>New Zeland</td>
</tr>
<tr>
<td>Di-Sodium Hydrogen Phosphate 7Hydrate</td>
<td>Panreac</td>
<td>Spain</td>
</tr>
<tr>
<td>(Na_{2}HPO_{4}.7H_{2}O) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Ethanol (C_{2}H_{5}OH) Absolute</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Filter paper GF/C</td>
<td>Watch man</td>
<td>U.K.</td>
</tr>
<tr>
<td>Filter paper No. 42</td>
<td>Watch man</td>
<td>U.K.</td>
</tr>
<tr>
<td>Glycine (NH_{2}CH_{2}COOH) AR. Grade</td>
<td>Fisher</td>
<td>U.K.</td>
</tr>
<tr>
<td>Hydrochloric Acid 37% (HCl) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Iron (II) SulphateHeptahydrate (FeSO_{4}.7H_{2}O) AR. Grade</td>
<td>QREC</td>
<td>New Zeland</td>
</tr>
<tr>
<td>Mercury (II) Sulfate (HgSO_{4}) AR. Grade</td>
<td>Merck</td>
<td>Germany</td>
</tr>
<tr>
<td>Chemical (สูตรโมเลกุล)</td>
<td>Brand</td>
<td>Country</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Methyl Red</td>
<td>QReC</td>
<td>New Zeland</td>
</tr>
<tr>
<td>NitraVer5</td>
<td>Hach</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Potassium Antimony Tartrate (K₂Sb₂O₅·C₆H₅₃H₂O)</td>
<td>Ajax</td>
<td>Australia</td>
</tr>
<tr>
<td>AR. Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium Dichromate (K₂Cr₂O₇) AR. Grade</td>
<td>Ajax</td>
<td>Australia</td>
</tr>
<tr>
<td>Potassium Dihydrogen Phosphate (KH₂PO₄) AR. Grade</td>
<td>Merck</td>
<td>Germany</td>
</tr>
<tr>
<td>Silver Sulfate (Ag₂SO₄) AR. Grade</td>
<td>Merck</td>
<td>Germany</td>
</tr>
<tr>
<td>Sodium Chloride (NaCl)</td>
<td>Chemex</td>
<td>Thailand</td>
</tr>
<tr>
<td>Sodium Hydroxide (NaOH) Commercial Grade</td>
<td>-</td>
<td>Thailand</td>
</tr>
<tr>
<td>Sodium hydroxide 97% (NaOH) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Sodium Nitrate (NaNO₃) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Sulfuric acid 96-98% (H₂SO₄) AR. Grade</td>
<td>RCI labscan</td>
<td>Thailand</td>
</tr>
<tr>
<td>TKN Catalyst tablet</td>
<td>Merck</td>
<td>Germany</td>
</tr>
</tbody>
</table>
บทที่ 4
ผลและวิจารณ์การทำงาน

ผลการทำงานที่ 1 ทดสอบความสามารถในการสะสมแคตเมียมของหญ้า 3 ชนิด
ความสูงทดสอบและความยาวรากของหญ้าทั้ง 3 ชนิด
ในการทดลองได้ทำการวัดความสูงของยอดและความยาวรากของหญ้าทั้ง 3 ชนิด ทั้งก่อนและหลังการทำงาน (ภาพที่ 6) โดยการวัดหญ้าด้วยยางจานวน 10 ต้น/ตร.เมตร และทำการวัด
ความสูงยอดและความยาวยาวรากทุกๆ 5 วันจนครบ 15 วันของการทดลอง จากการทดลองพบว่าหญ้า
ทั้ง 3 ชนิดมีความสูงยอดและความยาวรากที่เพิ่มขึ้นดังนี้

1. ความสูงยอดที่เพิ่มขึ้นสำหรับทรีเดนเนตที่มีแคตเมียม 1 mg./l.
จากการทดลองที่ทำการปลูกหญ้าในสารละลายที่มีการผสมแคตเมียมเข้าด้วย 1 mg./l.และได้ทำการ
วัดความสูงยอดของหญ้าทั้ง 3 ชนิดในวันที่ 5, 10 และ 15 ของการทดลอง (ตั้งแต่เวลาในภาพที่ 7)
ผลการศึกษาพบว่าความสูงยอดของหญ้าทั้ง 3 ชนิด สำหรับในวันที่ 5 หญ้าในทรีเดนเนต MCD1,
NCD1 และJCD1 มีความสูงยอดเพิ่มขึ้นเท่ากับ 1.9±0.5, 2.6±0.9 และ 3.4±1.2 มม. ตามลำดับ ส่วน
ในวันที่ 10 หญ้าในทรีเดนเนต MCD1, NCD1 และJCD1 มีความสูงยอดเพิ่มขึ้นเท่ากับ 2.6±0.5,
3.3±0.8 และ 5.3±1.4 มม. ตามลำดับ และในวันที่ 15 ของการทดลองหญ้าในทรีเดนเนต MCD1,
NCD1 และJCD1 มีความสูงยอดเพิ่มขึ้นเท่ากับ 3.8±0.6, 3.7±0.9 และ 6.5±1.7 มม. ตามลำดับ และ
พบว่ามีการเปลี่ยนแปลงด้านความยาวรากที่เพิ่มขึ้นของหญ้าในทรีเดนเนต MCD1, NCD1 และ
JCD1 พูดว่าความสัมพันธ์ของความยาวรากที่เพิ่มขึ้นของหญ้าทั้ง 3 ชนิด ได้ในวันที่ 5, 10 และ 15 ไม่มีแตกต่าง
กันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) โดยที่หญ้าในทรีเดนเนต JCD1 มีความสูง
เพิ่มขึ้นมากที่สุดรองลงมาคือ NCD1 และMCD1 ตามลำดับ คาดว่าเนื่องมาจากหญ้าในทรีเดนเนต
JCD1 มีความสามารถในการปรับตัวในสภาพที่มีสารอาหารต่างๆ ได้ดีและมีการแบ่งเวลาในการตัดใน
ส่วนกว่าหญ้าที่ใส่ในทรีเดนเนต MCD1 และNCD1 (5-10 วัน) แสดงให้เห็นว่าหญ้าใน ทรีเดนเนต JCD1
มีความสามารถในการเพิ่มความสูงยอดได้เร็วกว่าหญ้าอีก 2 ชนิด (นาไชโย, 2539) ซึ่งสามารถสังเกต
ได้จากการเพิ่มความสูงของหญ้าทั้ง 3 ชนิดที่ปลูกในทรีเดนเนตควบคุม MCD0, NCD0 และJCD0 ที่
พบว่าหญ้าที่ใส่ในทรีเดนเนต JCD0 มีความสูงเพิ่มขึ้นมากที่สุดรองลงมาคือ MCD0 และNCD0 ตามลำดับ

2. ความยาวรากที่เพิ่มขึ้นสำหรับทรีเดนเนตที่มีแคตเมียม 1 mg./l.
จากการทดลองที่ทำการปลูกหญ้าในสารละลายที่มีการผสมแคตเมียมเข้าด้วย 1 mg./l.และได้ทำการ
วัดความยาวรากของหญ้าทั้ง 3 ชนิดในวันที่ 5, 10 และ 15 ของการทดลอง (ตั้งแต่เวลาในภาพที่ 7)
ผลการศึกษาพบว่าความยาวรากของหญ้าทั้ง 3 ชนิด สำหรับในวันที่ 5 หญ้าในทรีเดนเนต MCD1,
NCD1 และJCD1 มีความยาวรากเพิ่มขึ้นเท่ากับ 1.6±0.5, 2.3±0.8 และ 3.1±1.2 มม. ตามลำดับ ส่วน
ในวันที่ 10 หญ้าในทรีเดนเนต MCD1, NCD1 และJCD1 มีความยาวรากเพิ่มขึ้นเท่ากับ 2.3±0.5,
3.0±0.8 และ 5.0±1.4 มม. ตามลำดับ และในวันที่ 15 ของการทดลองหญ้าในทรีเดนเนต MCD1,
NCD1 และJCD1 มีความยาวรากเพิ่มขึ้นเท่ากับ 3.5±0.6, 3.6±0.9 และ 6.0±1.7 มม. ตามลำดับ และ
พบว่ามีการเปลี่ยนแปลงด้านความยาวรากที่เพิ่มขึ้นของหญ้าในทรีเดนเนต MCD1, NCD1 และ
JCD1 พูดว่าความสัมพันธ์ของความยาวรากที่เพิ่มขึ้นของหญ้าทั้ง 3 ชนิด ได้ในวันที่ 5, 10 และ 15 ไม่มีแตกต่าง
กันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) โดยที่หญ้าในทรีเดนเนต JCD1 มีความสูง
เพิ่มขึ้นมากที่สุดรองลงมาคือ NCD1 และMCD1 ตามลำดับ คาดว่าเนื่องมาจากหญ้าในทรีเดนเนต
JCD1 มีความสามารถในการปรับตัวในสภาพที่มีสารอาหารต่างๆ ได้ดีและมีการแบ่งเวลาในการตัดใน
ส่วนกว่าหญ้าที่ใส่ในทรีเดนเนต MCD1 และNCD1 (5-10 วัน) แสดงให้เห็นว่าหญ้าใน ทรีเดนเนต JCD1
มีความสามารถในการเพิ่มความยาวรากได้เร็วกว่าหญ้าอีก 2 ชนิด (นาไชโย, 2539) ซึ่งสามารถสังเกต
ได้จากการเพิ่มความยาวของหญ้าทั้ง 3 ชนิดที่ปลูกในทรีเดนเนตควบคุม MCD0, NCD0 และJCD0 ที่
พบว่าหญ้าที่ใส่ในทรีเดนเนต JCD0 มีความยาวเพิ่มขึ้นมากที่สุดรองลงมาคือ MCD0 และNCD0 ตามลำดับ
ภาพที่ 6 ลักษณะทางกายภาพของหญ้าดัง 3 ชนิดที่ปลูกในสารละลายแคคเตียม 3 ค่าความเข้มข้น

(ก) หญ้าแก้วเชื้อ (A. compuressus P.Beauv.) (ข) หญ้าป้อม (Z. japonica) และ

(ค) หญ้าแหวนหล่อ (Z. matrella (L.) Merrill)
2. ความสูงของที่พื้นซึ่งสภารัฐได้รับความสูงเมื่อใช้ศักย์ชีวิต 3 มก./ว.

จากการทดลองที่ทำให้กลุ่มคนในสารละลายที่มีการผสมแคลเซียมแอนไฮเดรน 3 มก./ว. และได้
ทำการวัดความสูงของอุณหภูมิ 3 ชนิดในวันที่ 5, 10 และ 15 ของการทดลอง (ดังแสดงในตารางที่ 7)
ผลการศึกษาพบว่าในวันที่ 5 หญิงในครั้งแรกนั้น MCD3, NCD3 และ JCD3 มีความสูงของที่พื้นซึ่งเท่ากับ
1.5±0.3, 1.8±0.4 และ 2.4±0.6 มม. ตามลำดับ สำนักในวันที่ 10 หญิงในครั้งแรกนั้น MCD3, NCD3 และ
JCD3 มีความสูงของที่พื้นซึ่งเท่ากับ 2.3±0.5, 2.3±0.5 และ 4.5±0.5 มม. ตามลำดับ และในวันที่ 15
ของการทดลองหญิงในครั้งแรกนั้น MCD3, NCD3 และ JCD3 มีความสูงของที่พื้นซึ่งเท่ากับ 3.1±0.4,
2.1±0.6 และ 5.1±0.6 มม. ตามลำดับ อย่างไรก็ตามเนื่องจากสองกลุ่มของความสูงของที่พื้นซึ่ง
ของหญิงในครั้งแรกนั้น MCD3, NCD3 และ JCD3 พบว่าค่าเฉลี่ยของความสูงของที่พื้นซึ่งของหญิงที่ 3
ชนิด คือ ในวันที่ 5 ไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) สำนักค่าเฉลี่ย
ความสูงของที่พื้นซึ่งของวันที่ 10 และ 15 ของหญิงในครั้งแรกนั้น JCD3 พบว่ามีค่าเฉลี่ยความสูงของที่
พื้นซึ่งแตกต่างจากหญิงในครั้งแรกนั้น MCD3 และ NCD3 อย่างมีนัยสำคัญทางสถิติ (One-way ANOVA,
LSD; p<0.05) โดยที่หญิงในครั้งแรกนั้น JCD3 มีความสูงของที่พื้นซึ่งที่สุด รองลงมาคือ MCD3 และ NCD3.
ตามลำดับค่าเฉลี่ยของสำนักในครั้งแรกนั้น JCD3 มีความสามารถในการเจริญเติบโตในสาระที่มี
สารอาหารที่ได้ดีและมีระยะเวลาในการตั้งพืชระหว่างหญิงในครั้งแรกนั้น MCD3 และ NCD3 (5-10 วัน)
แสดงให้เห็นว่าหญิงในครั้งแรกนั้น JCD3 มีความสามารถในการพื้นที่ความสูงของได้เร็วกว่าหญิงที่ 2 ชนิด
(มาใช้, 2539) ซึ่งสารสังเคราะห์ได้จากการพื้นที่ความสูงของหญิง 3 ชนิดที่ปลูกในครั้งแรกนั้นความสูง
MCD0, NCD0 และ JCD0 พบว่าหญิงในครั้งแรกนั้น JCD0 มีความสูงที่สุดมากกว่าของสารสังเคราะห์หญิงที่
ปลูกในครั้งแรกนั้น MCD0 และ NCD0 ที่มีความสูงที่สุดมากกว่าที่ปลูกในครั้งแรกนั้น JCD0 มีการ
พื้นที่ความสูงของความสูงของที่พื้นซึ่งในขั้นตอนที่ 2 ชนิดนี้ไม่มีที่อยู่อาศัยมีการพื้นที่ความสูงของพืช
ขั้นตอนที่เกิดจากหญิงที่ใช้ในครั้งแรกนั้น NCD3 ใดๆความเป็นพืชของแคลเซียมในระดับที่สุ่มมาจากหญิงที่
2 ชนิดสังเคราะห์ได้จากการพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
รัดได้มีค่าเฉลี่ยสูงเช่นเดียวกันที่ทำให้การพื้นที่มีค่าเฉลี่ยคิดขึ้นเช่นกันที่ทำให้การทดลองเมื่อสิ้นสุดไปแล้ว 10 วัน
ซึ่งพบว่า
หญิงในครั้งแรกนั้น NCD3 มีการพื้นที่ความสูงของที่พื้นซึ่งขั้นตอนแรกมากกว่าของหญิงที่ 2 ชนิดสังเคราะห์ให้ความสูงที่
ภาพที่ 7 ความสูงยอดที่เพิ่มขึ้นของหญ้าทั้ง 3 ชนิดในสารละลายแคดมีมมีแม้มันชัน 0, 1 และ 3 มก./ล. (ก) หญ้าม้าเล็กชัย (ข) หญ้าม้าเล็กน้อย และ (ค) หญ้าม้าปุ่น
3. ความยาวกระดาษเพิ่มขึ้นสำหรับทรีมันท์ที่มีผลิตภัณฑ์ 1 มก./ก.

จากการทดลองที่ทำการปลูกพืชในสารละลายที่มีการผสมผลิตภัณฑ์ขึ้น 1 มก./ก. และได้ทำการวัดความยาวกระดาษของพืชทั้ง 3 ชนิดในวันที่ 5, 10 และ 15 ของการทดลอง (ตัวแสดงในภาพที่ 8) ผลการศึกษาพบว่าในวันที่ 5 หนูในทรีมันท์ MCD1, NCd1 และ JCD1 มีความยาวกระดาษเพิ่มขึ้นเท่ากับ 19.2±2.0, 9.3±1.0 และ 9.7±2.8 มม. ตามลำดับ สำหรับในวันที่ 10 หนูในทรีมันท์ MCD1, NCd1 และ JCD1 มีความยาวกระดาษเพิ่มขึ้นเท่ากับ 22.2±2.1, 7.0±0.9 และ 12.3±2.7 มม. ตามลำดับ และในวันที่ 15 ของการทดลองหนูในทรีมันท์ MCD1, NCd1 และ JCD1 มีความยาวกระดาษเพิ่มขึ้นเท่ากับ 24.3±2.0, 10.1±1.1 และ 15.8±2.4 มม. ตามลำดับ อย่างไรก็ตามพบว่าค่าเฉลี่ยของความยาวกระดาษเพิ่มขึ้นของหนูในทรีมันท์ MCD1, NCd1 และ JCD1 ในวันที่ 5, 10 และ 15 มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p<0.05) โดยในวันที่ 5 และ 10 หนู

ในทรีมันท์ MCD1 จะมีความยาวกระดาษเพิ่มขึ้นแตกต่างจากหนูในทรีมันท์ NCd1 และ JCD1 อย่างมีนัยสำคัญทางสถิติ (LSD; p<0.05) และในวันที่ 15 ของการทดลองพบว่าหนูทั้ง 3 ชนิดในทรีมันท์มีความยาวกระดาษที่เพิ่มขึ้นแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (LSD; p<0.05) เป็นหนีสารกล่าวว่าหนูในทรีมันท์ MCD1 มีความยาวกระดาษที่เพิ่มขึ้นมากที่สุด รองลงมาคือหนูในทรีมันท์ NCd1 และ JCD1 ตามลำดับ คาดว่าเนื่องจากหนูในทรีมันท์ MCD1 มีลักษณะทางกายภาพของกระดาษที่มีขนาดใหญ่กว่าหนูในทรีมันท์ NCd1 และ JCD1 และกระดูกของหนูในทรีมันท์ MCD1 มีการเจริญเติบโตเพิ่มขึ้นแต่ไม่มีการแพร่กระจายขนาดเพิ่มขึ้นอย่างความยาวกระดาษเท่ากันที่เพิ่มขึ้นซึ่งแตกต่างจากหนูอื่น 2 ชนิดที่มีการเพิ่มความยาวของกระดาษมีการเพิ่มปริมาตรการแพร่กระจายเพิ่มขึ้นไป

4. ความยาวกระดาษที่เพิ่มขึ้นสำหรับทรีมันท์ที่มีผลิตภัณฑ์ 3 มก./ก.

จากการทดลองที่ทำการปลูกพืชในสารละลายที่มีการผสมผลิตภัณฑ์เข้ากัน 3 มก./ก. และได้ทำการวัดความยาวกระดาษของพืชทั้ง 3 ชนิดในวันที่ 5, 10 และ 15 ของการทดลอง (ตัวแสดงในภาพที่ 8) ผลการศึกษาพบว่าในวันที่ 5 หนูในทรีมันท์ MCD3, NCd3 และ JCD3 มีความยาวกระดาษที่เพิ่มขึ้นเท่ากับ 12.7±2.1, 4.4±3.8 และ 8.8±2.0 มม. ตามลำดับ สำหรับในวันที่ 10 หนูในทรีมันท์ MCD3, NCd3 และ JCD3 มีความยาวกระดาษที่เพิ่มขึ้นเท่ากับ 17.2±1.6, 7.2±1.6 และ 11.1±1.9 มม. ตามลำดับ และในวันที่ 15 หนูในทรีมันท์ MCD3, NCd3 และ JCD3 มีความยาวกระดาษที่เพิ่มขึ้นเท่ากับ 20.6±2.2, 10.6±1.8 และ 13.9±1.8 มม. ตามลำดับ อย่างไรก็ตามพบว่าความยาวกระดาษที่
เพิ่มขึ้นของหญ้าในทรีเดนเน็ท MCD3, NCd3 และ JCD3 มีค่าแปรปรวนของความยาวรายการที่เพิ่มขึ้นของหญ้าทั้ง 3 ชนิด ในวันที่ 5, 10 และ 15 แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p<0.05) และพบว่าในวันที่ 5 หญ้าในทรีเดนเน็ท MCD3 มีความยาวรายการที่เพิ่มขึ้นแตกต่างจากหญ้าในทรีเดนเน็ท NCd3 อย่างมีนัยสำคัญทางสถิติ (LSD; p<0.05) แต่ไม่แตกต่างจากหญ้าในทรีเดนเน็ท JCD3 และในวันที่ 10 และ 15 พบว่าหญ้าใน ทรีเดนเน็ท MCD3 มีความยาวรายการที่เพิ่มขึ้นแตกต่างจากหญ้าในทรีเดนเน็ท NCd3 และ JCD3 อย่างมีนัยสำคัญทางสถิติ (LSD; p<0.05) โดยหญ้าในทรีเดนเน็ท MCD3 มีความยาวรายการที่เพิ่มขึ้นมากที่สุด รองลงมาคือหญ้าในทรีเดนเน็ท JCD3 และ NCd3 ตามลำดับ คาดว่าเนื่องจากหญ้าในทรีเดนเน็ท MCD3 มีลักษณะทางกายภาพของรากที่มีขนาดใหญ่กว่าหญ้าในทรีเดนเน็ท NCd3 และ JCD3 และรากของหญ้าในทรีเดนเน็ท MCD3 ที่เจริญเติบโตเพิ่มขึ้นไม่มีการแยกที่แข็งแรงเพียงพอที่จะควบคุมการเพิ่มเติม ความยาวรายการและมีการเพิ่มเติมผ่านจากพืชเพิ่มขึ้นไปเพื่อทุกๆเกณฑ์.

แคแรกเตอร์สัมประสิทธิ์ของการเพิ่มความสูงของยอดและความยาวของรายการของหญ้าทั้ง 3 ชนิด การไม่แตกต่างทางสถิติในทรีเดนเน็ท 3 ชนิดมีความสูงของยอดตลอดและมีความยาวของรายการตลอดและ ทำให้เกิดน้ำหนักบริเวณปลายรายการของพืช ซึ่งการเปลี่ยนแปลงนี้อาจเกิดจากแคแรกเตอร์สัมประสิทธิ์ในการเพิ่มความสูงของยอดจำนวน (Beyersmann, 2002) ซึ่งส่งผลให้การเจริญเติบโต ขณะนี้ของการเพิ่มของขึ้นและส่งผลให้การเจริญเติบโตเพิ่มขึ้น (Varga et al., 1999) แคแรกเตอร์สัมประสิทธิ์ของการเพิ่มของขึ้นสูงในระยะยาว (Haag-Kenwer et al., 1999) ที่เกิดขึ้นที่เจริญเติบโตของการเจริญเติบโตในการเพิ่มของขึ้นสูงที่เจริญเติบโต (Haag-Kenwer et al., 1999) ที่เกิดขึ้นที่เจริญเติบโตของการเพิ่มของขึ้นสูงที่เจริญเติบโต (Haag-Kenwer et al., 1999) ที่เกิดขึ้นที่เจริญเติบโตของการเพิ่มของขึ้นสูงที่เจริญเติบโต (Haag-Kenwer et al., 1999) ที่เกิดขึ้นที่เจริญเติบโตของการเพิ่มของขึ้นสูงที่เจริญเติบโต (Haag-Kenwer et al., 1999) ที่เกิดขึ้นที่เจริญเติบโต (Haag-Kenwer et al., 1999)
ภาพที่ 8 ความยาวจากที่เพิ่มขึ้นของทุ่งทั้ง 3 ชนิดในการปลูกgregatedเมื่อเชื้อเข้า 0, 1 และ 3 มก./ล. (ก) หญ้ามะласเขียว (ข) หญ้าแสมน้อย และ (ค) หญ้าฝักปูน
การสะสมแคคเนียมในยอดและการถ่ายของหญ้าทั้ง 3 ชนิด

จากการทดลองศึกษาของหญ้าที่ไม่ถูกใช้งานทางภูมิทัศน์ 3 ชนิด ได้แก่ หญ้ามรกษี (A. compuressus P. Beauv) หญ้าหนานหนาย (Z. matrella (L.) Merrill) และหญ้าผึ้งชื่น (Z. japonica) เพื่อทดสอบความสามารถในการสะสมแคคเนียมโดยใช้ระบบปิดโดยนิวโมนร่วมกับการใช้น้ำใหม่ของสิ่งแวดล้อม ที่มีสารละลายแคคเนียมเช่นกัน 0, 1 และ3 มก./ล. โดยมีหญ้าจำนวน 20 ต้น/บริเวณหน้า/5 วัน ผลการทดลองแสดงได้ดังต่อไปนี้

1. การสะสมแคคเนียมสำหรับทรีเดนเน็ตที่ไม่มีแคคเนียม

จากการทดลองทรีเดนเน็ตที่ทำการปลูกหญ้าในสารละลายที่ไม่มีการสะสมแคคเนียม (ทรีเดนเน็ต MCD0, NC0 และ JCD0) พบว่ายอดและรากในการทดลองไม่พบการสะสมของแคคเนียมทั้งในส่วนของยอดและรากของหญ้าในทรีเดนเน็ต MCD0, NC0 และ JCD0 ซึ่งมีฟิล์ปIPCที่ได้รับผ่านในดินทั้งปีไม่มีการเปลี่ยนแปลงของแคคเนียมจะไม่พบแคคเนียมในส่วนต่างๆ ของพืช

เหล่านี้มีอยู่ คูมซพาเล่นท (2539) จะพบการสะสมของแคคเนียมในของหญ้าในบริเวณ 0.03-1.25 มก./ก.น. น้ำหนักแห้ง ถ้าตามเหตุผลที่ได้ก้ามพืชการทดลองตรวจสอบพบแคคเนียมทั้งในส่วนของยอดและค้าจำตัวจะเป็นเพราะในของพืชที่จะพาสูญไปจากพันธุ์หญ้าแต่ละนี้ไม่มีการเปลี่ยนของแคคเนียมส่งผลให้หญ้าทั้ง 3 ชนิดไม่มีการสะสมแคคเนียมในส่วนต่างๆ

2. การสะสมแคคเนียมสำหรับทรีเดนเน็ตที่มีแคคเนียมเช่นกัน 1 มก./ก.

จากการทดลองปลูกหญ้าในสารละลายที่มีการสะสมแคคเนียมเช่นกัน 1 มก./ก. และมีการเก็บตัวอย่างในวันที่ 5, 10 และ 15 ของการทดลอง โดยการสะสมแคคเนียมในส่วนของยอดและรากในวันที่ 5, 10 และ 15 ของการทดลอง (ตั้งแต่ในสารละลายที่ 9) จากผลการศึกษาพบว่าในวันที่ 5 หญ้าในทรีเดนเน็ต MCD1, NC1 และ JCD1 มีปริมาณแคคเนียมสะสมรวมเท่ากับ 87.08±0.81, 118.01±1.09 และ 224.00±2.01 มก./ก.น.น้ำหนักแห้ง ตามลำดับ ส่วนวันที่ 10 หญ้าในทรีเดนเน็ต MCD1, NC1 และ JCD1 มีปริมาณแคคเนียมสะสมรวมเท่ากับ 139.44±0.28, 213.69±1.46 และ 420.33±2.81 มก./ก.น.น้ำหนักแห้ง ตามลำดับ และในวันที่ 15 ของการทดลองหญ้าในทรีเดนเน็ต MCD1, NC1 และ JCD1 มีปริมาณแคคเนียมสะสมรวมเท่ากับ 288.41±1.36, 341.18±16.56 และ 597.19±2.29 มก./ก.น.น้ำหนักแห้ง ตามลำดับ จากการเปรียบเทียบค่าเฉลี่ยในการสะสมแคคเนียมรวม (ในยอดและราก) ของหญ้าในชุดการทดลอง MCD1, NC1 และ JCD1 พบว่าค่าเฉลี่ยในการสะสมแคคเนียมรวมของหญ้าทั้ง 3 ชนิด ทั้งในวันที่ 5, 10 และ 15 แตกต่างกันอย่างมีนัยสำคัญทาง
สถิติ (One-way ANOVA, LSD; p<0.05) โดยที่ผู้เสียในทรีบันต JCd1 สามารถสะสมแพคเม็ดได้มากที่สุด รองลงมาคือผู้เสียในทรีบันต NCd1 และ MCd1 ตามลำดับ การที่ผู้เสียในทรีบันต JCd1 สามารถสะสมแพคเม็ดได้ในปริมาณมากกว่าผู้เสีย 2 ชนิดคาดว่าเนื่องมาจากผู้เสียในทรีบันต JCd1 มีความสามารถในการเจริญเติบโตได้ใกล้เคียงผู้เสีย 2 ชนิดคือในระยะเวลาย特产กันผู้เสียใน

ภาพที่ 9 ปริมาณแพคเม็ดในยอดและลำต้นของผู้เสียทั้ง 3 ชนิดในการทดลองใช้น้ำสังเคราะห์ที่มีแพคเม็ดเข้มข้น 1 มก./ล.

3. การสะสมแพคเม็ดสำหรับทรีบันตที่มีแพคเม็ดเข้มข้น 3 มก./ล.
จากการทดลองปลูกผู้เสียในสารละลายที่มีการสะสมแพคเม็ดเข้มข้น 3 มก./ล. และเก็บตัวอย่างในวันที่ 5, 10 และ 15 ของการทดลอง โดยมีผลการสะสมแพคเม็ดในส่วนของยอดและลำต้นในวันที่ 5, 10 และ 15 ของการทดลอง (ดิสเพลสในภาพที่ 10) จากการศึกษาพบว่าในวันที่ 5 ผู้เสียในทรีบันต MCd3, NCd3 และ JCd3 มีปริมาณแพคเม็ดสะสมรวมเท่ากับ 120.15±1.30, 130.12±2.56 และ 224.62±1.86 มก./กก.น้ำหนักแห้ง ตามลำดับ ส่วนวันที่ 10 ผู้เสียในทรีบันต MCd3, NCd3 และ JCd3 มีปริมาณแพคเม็ดสะสมรวมเท่ากับ 237.87±0.72, 261.29±1.03 และ 520.97±1.32 มก./กก.น้ำหนักแห้ง ตามลำดับ และในวันที่ 15 ของการทดลองผู้เสียในทรีบันต MCd3, NCd3 และ JCd3 มีปริมาณแพคเม็ดสะสมรวมเท่ากับ 331.70±2.07, 383.30±1.30 และ
674.10±1.01 มก./ก.น้ำหนักแห้ง ตามลำดับ เมื่อเรียบร้อยค่าเฉลี่ยในการสะสมแคเดียมในวันเดือนที่ 3 ชีวิตทั้งสิ้น 5, 10 และ 15 แยกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA, LSD; p<0.05) โดยที่ศูนย์ในห้องมัณฑป JCd3 สามารถสะสมแคเดียมได้มากที่สุด รองลงมาศูนย์ในห้องมัณฑป NCd3 และMCD3 ตามลำดับ การที่ศูนย์ในห้องมัณฑป JCd3 สามารถสะสมแคเดียมได้ในปริมาณที่มากกว่าศูนย์อีก 2 ชนิดค่อนข้างเนื่องจากศูนย์ในห้องมัณฑป JCd3 มีความสามารถในการเจริญเติบโตได้ใจกว่าศูนย์อีก 2 ชนิดต่อในระยะเวลานี้ที่ทำกันจนถึง ศูนย์ในห้องมัณฑป NCd3 สามารถกลั่นน้ำสุกและใช้สารอาหารได้มากกว่าศูนย์อีก 2 ชนิด โดยที่ศูนย์ทั้ง 3 ชนิดมีแนวโน้มในการสะสมแคเดียมได้มากขึ้นตามระยะเวลานี้เพิ่มขึ้นและตามความเข้มข้นของแคเดียมที่เพิ่มขึ้นต่อไปนั้น

แคเดียมที่เป็นปัจจัยอยู่ในสิ่งแวดล้อมสามารถสะสมสารทดแทนต่อพืช โดยแคเดียมจะเข้าไปในเพื่อกระทำให้เกิดการใช้การเพิ่มจำนวนอย่างรวดเร็วทำให้เกิดการเปลี่ยนแปลงการกลั่นขั้นหน้าและกว่าจะหมดและยังส่งผลต่อการคายภูมิ ทำให้เกิดการเจริญเติบโตและการเคลื่อนย้ายแคเดียมสู่ยอด ดังนั้นจึงทำให้ส่วนใหญ่จะพบแคเดียมในส่วนกลางมากกว่าในส่วนยอดของพืช (Beyersmann, 2002; Varga et al., 1999; Haag-Kerwer et al., 1999; Vidal et al., 2007) ได้ทำสารศักดาส่งกล้อง SEM/EDX ศูนย์ศึกษาของศูนย์เติบโต (C. rotondas Linn) และศูนย์แมลงเขี้ยม (A. compuressus P.Beauv) ที่ปลูกในสาร hòaตัวแคเดียมเข้มข้น 5 มก./ล. เป็นระยะเวลา 9 วัน โดยได้ให้ข้อสังเกตว่าศูนย์ทั้ง 2 ชนิดนั้นมีระบบนประสาทกระชับเป็นพืชของแคเดียมเอง จากการศึกษาของ Liang et al. (2005) ที่ได้ทำสารศักดาส่งกล้องซิตาตัวแคเดียมโดยทำสารปรับขาวโพด (Zea mays L.) ในต้นกร พบว่าซิตาตัวแคเดียมเป็นพืชของแคเดียมเองได้อย่างมาก โดยการทดสอบกันแคเดียมให้อยู่ในรูปแคเดียมศักดาส่งและการประกอบของสารนินทรีย์ที่ไม่ละลายในประสิทธิภาพในการจำกัดแคเดียมของศูนย์ทั้ง 3 ชนิด

จากการทดลองใช้ศูนย์ที่เป็นปัจจัยอยู่ในวันที่ 1 ด้านคูมุลิน (A. compuressus P. Beauv) ศูนย์แมลงเขี้ยม (Z. matrella (L.) Merril) และศูนย์ผึ้ง (Z. japonico) ในการทดลองแคเดียมในน้ำใสยศูนย์สารละลายที่ความเข้มข้น 1 และ 3 มก./ล. เป็นระยะเวลา 15 วันและได้ทำการเก็บผลการทดลองทุกๆ 5 วัน พบว่าศูนย์ทั้ง 3 ชนิดมีประสิทธิภาพในการลดปริมาณแคเดียมดังนี้
ภาคที่ 10 ปริมาณแคลเซียมในยอดและรากของหญ้าที่ 3 ช่วงในการทดลอง

1. ประสิทธิภาพในการกำจัดแคลเซียมสำหรับบริเวณน้ำที่มีแคลเซียมเข้มข้น 1 มก./ล.

จากการปลูกหญ้าในสารละลายที่มีการผสมแคลเซียมเข้มข้น 1 มก./ล. พบว่ามีปริมาณแคลเซียมคงเหลือในน้ำของวันที่ 1, 5, 10 และ 15 ของการทดลอง โดยในวันที่ 1 ชุดควบคุม, บริเวณน้ำ MCd1, NCd1 และ JCd1 มีปริมาณแคลเซียมคงเหลือเท่ากับ 1.3129±0.0851, 1.3129±0.0851, 1.3129±0.0851 และ 1.3129±0.0851 มก./ล. ตามลำดับ ส่วนในวันที่ 5 ชุดควบคุม, บริเวณน้ำ MCd1, NCd1 และ JCd1 มีปริมาณแคลเซียมคงเหลือเท่ากับ 1.1602±0.0675, 0.8914±0.0231, 0.8089±0.0140 และ 0.6837±0.0106 มก./ล. ตามลำดับ ในวันที่ 10 ของการทดลองชุดควบคุม, บริเวณน้ำ MCd1, NCd1 และ JCd1 มีปริมาณแคลเซียมคงเหลือเท่ากับ 1.1296±0.0053, 0.6867±0.0092, 0.6165±0.0140 และ 0.4118±0.0092 มก./ล. ตามลำดับ และในวันที่ 15 ของการทดลองชุดควบคุม, บริเวณน้ำ MCd1, NCd1 และ JCd1 มีปริมาณแคลเซียมคงเหลือเท่ากับ 1.1449±0.0191, 0.4698±0.0191, 0.4349±0.0092 และ 0.2072±0.0140 มก./ล. ตามลำดับ และเมื่อนำผลด้านบนแปลงชั้นต่างๆกำจัดปริมาณในบริเวณน้ำที่ 5, 10 และ 15 ของการทดลอง แสดงเป็นภาคที่ 11 โดยในวันที่ 5 หญ้าในบริเวณน้ำ MCd1, NCd1 และ JCd1 มีปริมาณแคลเซียมก็กำจัดแคลเซียมเท่ากับ 23.17±1.15 30.28±0.70 และ 41.07±0.53
เบอร์เชิงค่า ตามลำดับ สำหรับที่ 10 พฤติกรรมในครีดมันท์ Mcd1, Ncd1 และ Jcd1 มีปัจจัยเชิงการก้าจัดแตกต่างเท่ากับ 39.21±0.47 45.43±0.71 และ 63.54±0.47 เบอร์เชิงค่า ตามลำดับ และในวันที่ 15 ของการทดลองพบผู้ในครีดมันท์ Mcd1, Ncd1 และ Jcd1 มีปัจจัยเชิงการก้าจัดแตกต่างเท่ากับ 58.40±0.98 61.11±0.47 และ 81.66±0.71 ปัจจัยเชิงค่า ตามลำดับ เมื่อเปรียบเทียบค่าเฉลี่ยของเบอร์เชิงค่าการก้าจัดแตกต่างของผู้ในครีดมันท์ Mcd1, Ncd1 และ Jcd1 พบว่าเบอร์เชิงค่าการก้าจัดแตกต่างของผู้ในทั้ง 3 ชนิด ทั้งในการวันที่ 5, 10 และ 15 แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA, LSD; p<0.05) โดยผู้ในครีดมันท์ Jcd1 มีประสิทธิภาพในการก้าจัดแตกต่างมากที่สุด รองลงมาคือผู้ในครีดมันท์ Ncd1 และ Mcd1 ตามลำดับ การที่ผู้ในครีดมันท์ Jcd1 มีประสิทธิภาพในการก้าจัดแตกต่างมากกว่าผู้ในที่ Jcd1 ชนิดเดิมแน่นอนมากจากผู้ในครีดมันท์ Jcd1 มีความสามารถในการเจริญเติบโตได้กว่าผู้ในที่ Jcd1 ชนิดเดิมของคอกสองกับผลของความสูงตัวและความยาวที่เพิ่มขึ้น ซึ่งผู้ในครีดมันท์ Jcd1 มีการเพิ่มความสูงตัวได้มากที่สุดและสามารถมีการเจริญเติบโตได้มากกว่าผู้ในที่ Jcd1 ชนิดเดิมและมีการเจริญเติบโตในสารละลายอุบุกรุกซุปเปอร์ฟูไรในตัวผู้เป็นจำนวนมากส่งผลให้แตกต่างมีค่าคงเหลือในสารละลาย มีปริมาณที่ลดลงทำให้ค่าเบอร์เชิงค่าการก้าจัดเพิ่มมากขึ้น

2. ประสิทธิภาพในการก้าจัดแตกต่างมีนัยสำคัญระหว่างครีดมันท์ที่มีแตกต่างมีค่าเชิงค่า 3 มก./ล.

จากระบูรกลุ่มผู้ในสารละลายที่มีการผสมแตกต่างมีช่วง 3 มก./ล. พบว่ามีปริมาณแตกต่างมีค่าเชิงค่าในน้ำของวันที่ 1, 5, 10 และ 15 ของการทดลอง โดยในวันที่ 1 ชุดควบคุม, ครีดมันท์ Mcd1, Ncd1 และ Jcd1 มีปริมาณแตกต่างมีค่าเท่ากับ 3.1090±0.0831, 3.1090±0.0831 และ 3.1090±0.0831 มก./ล. ตามลำดับ สำหรับในวันที่ 5 ชุดควบคุม, ครีดมันท์ Mcd1, Ncd1 และ Jcd1 มีปริมาณแตกต่างมีค่าเท่ากับ 3.1456±0.0191, 2.7699±0.0140, 2.7180±0.0922 และ 2.1987±0.0930 มก./ล. ตามลำดับ ในวันที่ 10 ของการทดลองชุดควบคุม, ครีดมันท์ Mcd1, Ncd1 และ Jcd1 มีปริมาณแตกต่างมีค่าเท่ากับ 3.1456±0.0191, 2.3209±0.0382, 2.1376±0.0382 และ 1.5389±0.0092 มก./ล. ตามลำดับ และในวันที่ 15 ของการทดลองชุดควบคุม, ครีดมันท์ Mcd1, Ncd1 และ Jcd1 มีปริมาณแตกต่างมีค่าเท่ากับ 3.1487±0.0295, 1.9116±0.0140, 1.6092±0.0212 และ 0.9402±0.0140 มก./ล. ตามลำดับ แสดงให้เห็นได้ว่ามีการเปลี่ยนการก้าจัดแตกต่างมีค่าในวันที่ 5, 10 และ 15 ของการทดลอง แสดงในภาพที่ 11 โดยในวันที่ 5 ผู้ใน ครีดมันท์ Mcd3, Ncd3 และ
JCD3 มีเปอร์เซ็นต์การก้าจติดแต่ละเม็ดเท่ากับ 11.94±0.26, 13.60±1.69 และ 30.10±1.70 เปรอร์เซ็นต์ ตามลำดับ ส่วนรูปที่ 10 หูอุ้มในเฟรเดนเดิม MCD3, NCD3 และ JCD3 มีเปอร์เซ็นต์การก้าจติดแต่ละเม็ดเท่ากับ 26.00±0.07, 32.04±0.70 และ 51.08±0.17 เปรอร์เซ็นต์ ตามลำดับ และ รูปที่ 15 ของการทดลองหูอุ้มในเฟรเดนเดิม MCD3, NCD3 และ JCD3 มีเปอร์เซ็นต์การก้าจติดแต่ละเม็ดเท่ากับ 39.28±0.26, 48.90±0.37 และ 70.14±0.26 เปรอร์เซ็นต์ ตามลำดับ เมื่อเปรียบเทียบค่าเฉลี่ยของเปอร์เซ็นต์การก้าจติดแต่ละเม็ดของหูอุ้มในเฟรเดนเดิม MCD3, NCD3 และ JCD3 พบว่าการก้าจติดแต่ละเม็ดของหูอุ้มทั้ง 3 ชนิด ในวันที่ 5, 10 และ 15 แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; \(p<0.05 \)) โดยค่าเฉลี่ยของเปอร์เซ็นต์การก้าจติดแต่ละเม็ดในวันที่ 5 ของหูอุ้มในเฟรเดนเดิม JCD3 มีค่าเฉลี่ยแตกต่างจากหูอุ้มในเฟรเดนเดิม MCD3 และ NCD3 อย่างมีนัยสำคัญทางสถิติ (LSD; \(p<0.05 \)) ส่วนในวันที่ 10 และ 15 พบว่าค่าเฉลี่ยของเปอร์เซ็นต์การก้าจติดแต่ละเม็ดของหูอุ้มทั้ง 3 ชนิดแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (LSD; \(p<0.05 \)) จะเห็นได้ว่าทุกๆวันที่ 3 ชนิดมีแนวโน้มในการก้าจติดแต่ละเม็ดเพิ่มขึ้นตามระยะเวลา โดยที่หูอุ้มในเฟรเดนเดิม JCD3 จะมีประสิทธิภาพในการก้าจติดแต่ละเม็ดได้ดีที่สุดเมื่อเทียบกับหูอุ้มอีก 2 ชนิด ทั้งนี้คาดว่าเป็นเพราะหูอุ้มในเฟรเดนเดิม JCD3 มีความสามารถในการก้าจติดได้ดีกว่าหูอุ้มอีก 2 ชนิดซึ่งสอดคล้องกับผลของการวิเคราะห์ความสุ่มอิสระและความถี่ของการก้าจติด ซึ่งหูอุ้มในเฟรเดนเดิม JCD3 มีการเพิ่มความสูงขึ้นได้มากที่สุดและสามารถสะสมแต่ละเม็ดได้มากที่สุดซึ่งกัน ซึ่งเมื่อแต่ละเม็ดมีการสะสมแต่ละเม็ดจะมีปริมาณที่ลดลงทำให้มีเปอร์เซ็นต์การก้าจติดเพิ่มขึ้น เบื้องต้นการคำนวณเปอร์เซ็นต์การก้าจติดมีวิธีคำนวณดังสมการที่ 1

\[
\text{เปอร์เซ็นต์การก้าจติด} = \frac{\text{ปริมาณแต่ละเม็ดของชุดควบคุม} - \text{ชุดทดลอง} \times 100}{\text{ปริมาณแต่ละเม็ดชุดควบคุม}}
\]

ปริมาณเฉลี่ยของแต่ละเม็ดของหูอุ้มทั้ง 3 ชนิด

จากการทดลองปรากฏว่า 3 ชนิดในสารละลายแต่ละเม็ดมีค่าเปอร์เซ็นต์การก้าจติดในวันที่ 1 และ 3 มก./ล ได้ทำการวัดปริมาณเฉลี่ยของแต่ละเม็ดซึ่งมีค่าเปอร์เซ็นต์การก้าจติดในวันที่ 12 จากการทดลองพบว่าปริมาณเฉลี่ยของตัวอย่าง A. compuressus P.Beauv ที่นั่งการทดลอง และหลังการทดลองของหูอุ้มเม็ด MDO, MCD1 และ MCD3 มีค่าเท่ากับ 1.61±0.12, 2.20±0.09, 2.24±0.13 และ 2.17±0.10 มก./ล น้ำหนักบิด
ตามลำดับ ส่วนปริมาณคลอยกริ่งตารวมของหูคิวนาลน้อย (Z. matrella (L.) Merrill) ก่อนการทดลอง และหลังการทดลองของทรีมันด์ NCd0, NCd1 และ NCd3 มีค่าเท่ากัน 1.25±0.10, 2.53±0.48, 2.58±0.17 และ 2.56±0.30 มก./ก.น้าหนักใบสด ตามลำดับและปริมาณคลอยกริ่งรวมของหูคิวญี่ปุ่น (Z. japonica) ก่อนการทดลอง และหลังการทดลองของทรีมันด์ JCd0, JCd1 และ JCd3 มีค่าเท่ากัน 1.84±0.08, 3.31±0.47, 3.27±0.44 และ 3.25±0.28 มก./ก.น้าหนักใบสด ตามลำดับ เมื่อเปรียบเทียบค่าเฉลี่ยของปริมาณคลอยกริ่งหลังการทดลองของทรีมันด์ MCd0, MCd1 และ MCd3 พบว่าไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) ในส่วนของปริมาณคลอยกริ่งหลังการทดลองของทรีมันด์ NCd0, NCd1 และ NCd3 พบว่าไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) และปริมาณคลอยกริ่งหลังการทดลองของทรีมันด์ JCd0, JCd1 และ JCd3 พบว่าไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) เข็มกัน

ภาพที่ 11 ปอร์ชชีนก์การกำจัดคลอเดย์ในสารละลายที่มีคลอเดย์เชื้อซับ (ก) 1 และ(ข) 3 มก./ก.น.
โดยปกติผลหน้าจะส่งผลกระทบต่อสุขภาพของดินพืช โดยแคคเมียมมีผลกระทบต่อกลไกของริชิคลอโรฟิลส์และลดปริมาณคลอโรฟิลส์ส่งผลให้ความสูญเสียผลผลิตและทำให้ซิมมิวล็อตติ้งในที่สุด ซึ่งแคคเมียมจะเปลี่ยนชั่วฉันกับสารที่จำเป็นต่อพืช เช่น Cu และ Zn ในการดูดซึมและขนส่งในพืช โดยจะไปแทนที่สารเหล่านั้นอย่างการในปฏิกิริยาของคลอโรฟิลส์ที่จำเป็นต่อกระบวนการแบ่งของสิ่งของ RNA DNA และโปรตีน (Orcutt and Nilsen, 2000) อย่างไรก็ตามจากการทดลองไม่พบว่าแคคเมียมส่งผลต่อบริมาณคลอโรฟิลส์ของหญ้าทั้ง 3 ชนิด โดยที่หญ้าทั้ง 3 ชนิดที่ปลูกในสารละลายที่มีแคคเมียมมากขึ้น 2 ความเข้มข้นยังคงบริมาณคลอโรฟิลส์เพิ่มขึ้นเกิดเรื่องกับพืชที่ไม่มีการใส่แคคเมียม ซึ่งผลที่ได้เป็นไปในทางเดียวกันกับการศึกษาของ Manousaki et al. (2008) ที่ทำการศึกษาความสามารถในการจำคัดแคคเมียมของพืช Tamarix smyrnensis ที่ปลูกในสารละลายที่มีความเข้มข้นและไม่มีความเข้มข้น จากผลการศึกษาพบว่าพืช T. smyrnensis ไม่มีผลกระทบต่อกลไกสะสมเรื่องเป็นพืชของแคคเมียมมีเพียงการจำคัดได้จากกลไกสะสมเรื่องกับพืชที่ปลูก ปริมาณคลอโรฟิลส์และบิชของพืช T. smyrnensis ที่มีการทดลองที่มีแคคเมียมและไม่มีแคคเมียม และที่มีความเข้มข้นและไม่มีความเข้มข้นก็พบว่าไม่แตกต่างกันอย่างมีนัยสำคัญ

![Diagram](image)

ภาพที่ 12 ปริมาณคลอโรฟิลส์ของหญ้าทั้ง 3 ชนิด ในความเข้มข้นของสารละลายแคคเมียมเข้มข้น 1 และ 3 มก./ล. ทั้งก่อนและหลังการทดลอง.
ผลการทดลองที่ 2 สิทธิภาพประสิทธิภาพในการกำจัดแคคเมียม

ของระบบการทางชีวภาพรวมกับหญ้า

จากผลการทดลองในการทดลองที่ 1 และ 2 และได้เห็นว่าเมื่อเปรียบเทียบคุณสมบัติในการเจริญเติบโต การสะสมแคคเมียมและการกำจัดแคคเมียมในสารอาหารที่มีแคคเมียมเข้มข้น 1 และ 3 มก./ล. ของหญ้าทั้ง 3 ชนิดพบว่าหญ้าอูดูปุ่มมีคุณภาพในการสะสมแคคเมียมตั้งใจออกและรากมากกว่าหญ้าอูดูปุ่ม 2 ชนิด และมีการเจริญเติบโตของยอดมากที่สุดรวมไปถึงมีผลการกำจัดแคคเมียมสูงที่สุดในสารอาหารที่ 2 ความเข้มข้นของแคคเมียม (1 และ 3 มก./ล.) ดังนั้นในการทดลองที่ 2 หญ้าอูดูปุ่มจึงถูกเลือกมาใช้เป็นพืชทรงพลังในการทดลองประสิทธิภาพในการกำจัดแคคเมียมในน้ำไหลของสิ่งราวของระบบการทางชีวภาพ

ในการทดลองที่ 2 จะแบ่งรีดเน้นต่อกันเป็น 4 รีดเน้นด้วยเวลา

รีดเน้นที่ 1 ประกอบไปด้วยระบบการผงชีวภาพที่ไม่มีการปลูกหญ้าและรวมตัวอยู่ในหลอกของสิ่งราวที่ไม่มีการสะสมแคคเมียม

รีดเน้นที่ 2 ประกอบไปด้วยระบบการผงชีวภาพที่มีการปลูกหญ้าและรวมตัวอยู่ในหลอกของสิ่งราวที่ไม่มีการสะสมแคคเมียม

รีดเน้นที่ 3 ประกอบไปด้วยระบบการผงชีวภาพที่ไม่มีการปลูกหญ้าและรวมตัวอยู่ในหลอกของสิ่งราวที่มีการสะสมแคคเมียมที่มีความเข้มข้น 3 มก./ล.

รีดเน้นที่ 4 ประกอบไปด้วยระบบการผงชีวภาพที่มีการปลูกหญ้าและรวมตัวอยู่ในหลอกของสิ่งราวที่มีการสะสมแคคเมียมที่มีความเข้มข้น 3 มก./ล.

โดยแต่ละรีดเน้นตั้งแต่ต้นสูดจนถึงยอดเวลา 30 วัน โดยทำการเก็บตัวอย่างน้ำทุกๆ 3 วัน และทำการทดลองประสิทธิภาพของระบบการผงชีวภาพรวมกับการปลูกหญ้าโดยมีผลการทดลองต่างกัน

ประสิทธิภาพของระบบการผงชีวภาพ

1. ประสิทธิภาพในการกำจัดของเชื้อแบคทีเรีย

จากการทดลองนี้ไหลของสิ่งราวที่เข้าสู่ระบบการทางชีวภาพทั้ง 4 รีดเน้นตั้งเป็นระยะเวลา 30 วัน (ตั้งแต่ในภาพที่ 13) พบว่าระบบการผงชีวภาพสามารถกำจัดของเชื้อแบคทีเรียในน้ำได้ โดยที่ รีดเน้นที่ 1, 2, 3 และ 4 สามารถกำจัดของเชื้อแบคทีเรียในน้ำไหลของสิ่งราวที่ได้ผลิตเท่ากับ 83.93%±0.58, 85.26±0.56, 84.41±0.57 และ85.68±0.06 เปอร์เซ็นต์ ตามลำดับ
และเมื่อปรับเทียบค่าเฉลี่ยประสิทธิภาพการกำจัดของแบะของทั้ง 4 รายการที่พบในทั้ง 4
หรือรวมที่มีค่าเฉลี่ยประสิทธิภาพการกำจัดของแบะและละเลยไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ
(One-way ANOVA; p>0.05) และมีความแตกต่างของแบะละเลยไม่น้ำออกจากระบบกระตุ้นเชิงภาพของ
ทุก กรุ๊ปมีค่าเฉลี่ยน้อยกว่า 10 มก./ล. ซึ่งผลที่ได้คล้ายกับงานวิจัยของ Hatt et al. (2005) ที่ได้
ทำการทดสอบความสามารถในการกำจัดสัตว์ในน้ำของขั้นกระตุ้นเชิงภาพ และพบว่าปริมาณ
ของแบะละเลยไม่น้ำออกจากระบบกระตุ้นเชิงภาพจะมีค่าเฉลี่ยตามความสึกหองระบบกระตุ้นเชิงภาพ
(ขั้นกว้างสูง 90 ซม. อุ่นข้นทรายที่สูง 70 ซม.) โดยระบบกระตุ้นที่มีน้ำราบรื่นตั้งแต่ 80 ซม. ขึ้นไป
สามารถลดปริมาณของแบะละเลยไม่น้ำออกจากระบบกระตุ้นให้เหลือน้อยกว่า 10 มก./ล. ได้
ดังนั้นปริมาณของแบะละเลยไม่น้ำออกจากระบบกระตุ้นที่สูงกว่าทุกขั้นกระตุ้นของอุ่นข้นทรายที่สูง
ทุกขั้นกระตุ้นของขั้นกระตุ้นเชิงภาพ (ระบบกระตุ้นเชิงภาพมีความสึกหอง 114 ซม.)
สำหรับการคำนวณประสิทธิภาพในการกำจัดของแบะละเลยไม่น้ำออกจากระบบกระตุ้นเชิงภาพที่ 2

\[
\text{ประสิทธิภาพการกำจัด} = \frac{\text{ปริมาณของแบะละเลยไม่น้ำออกในน้ำเอก} - \text{ปริมาณของแบะละเลยไม่น้ำเอก}}{\text{ปริมาณของแบะละเลยไม่น้ำเอก}} \times 100
\]

(2)
2. ประสิทธิภาพของการจัดจัดค่าสีคิโอดี

จากการทดลองสนับสนุนสัตว์สามารถจัดจัดค่าสีคิโอดีได้ดีที่สุดประมาณวันที่ 21 (ภาพที่ 14) ของการติดระบบที่ 1, 2, 3 และ 4 ซึ่งข้าวของน้ำคิโอดีไม่เปลี่ยนแปลงตามระยะเวลาและสามารถจัดจัดค่าสีคิโอดีได้ดีที่ประมาณวันที่ 21 (Steady state) ของการทดลองนี้เมื่อ 72.92±1.13, 78.04±1.17, 73.75±1.35 และ 77.94±1.27 เปอร์เซ็นต์ ตามลำดับ ซึ่งเมื่อเปรียบเทียบค่าเฉลี่ยประสิทธิภาพในการจัดจัดค่าสีคิโอดีของทั้ง 4 ทริแทนแค พบว่าทริแทนแคที่ 4 ทริแทนแค มีค่าเฉลี่ยประสิทธิภาพในการจัดจัดค่าสีคิโอดีแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p<0.05) และเมื่อนำค่าเฉลี่ยประสิทธิภาพในการจัดจัดค่าสีคิโอดีมาเปรียบเทียบค่าเฉลี่ยเฉลี่ยพบว่าการจัดจัดค่าสีคิโอดีของทริแทนแคที่ 1 และ 3 แตกต่างจากค่าเฉลี่ยของทริแทนแคที่ 2 และ 4 อย่างมีนัยสำคัญทางสถิติ (LSD; p<0.05) โดยที่ทริแทนแคที่ 4 มีการปลูกทุ่งผัก (ทริแทนแคที่ 2 และ 4) มีประสิทธิภาพในการจัดจัดค่าสีคิโอดีมากกว่าทริแทนแคที่ 1 และ 3 และการค้นหาประสิทธิภาพในการจัดจัดค่าสีคิโอดีมีวิธีพิเศษค่านวนกลางส่วนที่ 3

\[
\text{ประสิทธิภาพการจัดจัด} = \frac{\text{ปริมาณค่าสีคิโอดีในน้ำเข้า} - \text{ปริมาณค่าสีคิโอดีในน้ำออก}}{\text{ปริมาณค่าสีคิโอดีในน้ำเข้า}} \times 100
\]

(3)

![ภาพที่ 14 ประสิทธิภาพในการจัดจัดค่าสีคิโอดีของระบบการจัดจัดค่าสีคิโอดี 4 ทริแทนแค](image-url)
นอกจากนี้จะเห็นได้ว่าในช่วงแรกของการทดลองระบบเก่าของตัว 4 ทรัพย์มันมีประสิทธิภาพในการกำจัดค่าชีวิตได้ดียิ่งและมีค่าคงที่ที่น้อยลงจากการปรับตัวของกิจกรรมของจุลินทรีย์ในต้นที่อยู่ในระบบเก่าซึ่งสภาพแวดล้อมไม่เอื้อที่แล้ว(Yalcuk and Ugurlu, 2009) แต่เมื่อระยะเวลานานไปประมาณ 20 วันอาจทำให้กำจัดค่าชีวิตได้ดีขึ้นอย่างเห็นได้ชัดและสิ้นสุดได้ว่าระบบการชีวภาพที่มีการปลูกหมู่กิจกรรมมีประสิทธิภาพในการกำจัดค่าชีวิตได้มากกว่าระบบการชีวภาพที่มีขั้นตอนเพียงอย่างเดียวเนื่องจากหมู่กิจกรรมมีส่วนช่วยในการเพิ่มความหลากหลายของจุลินทรีย์ที่มีในระบบทำให้มีจุดนิ้วที่สามารถกำจัดสารภ newcomที่สุดที่มากขึ้น ซึ่งมีผลกระทบต่อเกิดถังเก็บกักงานน้ำของ Arunbaba et al. (2015) ที่พบว่าระบบบริโภคขยะที่ปลูกหมู่กิจกรรมซึ่งสามารถกำจัดค่าชีวิตได้มากกว่าระบบบริโภคขยะที่ไม่มีการปลูกหมู่กิจกรรมความสามารถในการกำจัดค่าชีวิตของระบบบริโภคขยะนั้นก็เกิดจากกิจกรรมของจุลินทรีย์ชนิดหนึ่งใช้อากาศและไม่ใช้อากาศกระดวนและจากการออกแบบของสารภ newcomในระบบบริโภคขยะเป็นปัจจัยหลักในการลดค่าชีวิต(Greenway and Woolley, 1999; Steer et al., 2002; Vymazal and Kropfelová; 2009) โดยถูกต้องที่จะส่งเสริมให้ใช้วิธีการแยกระบบและบริโภคขยะที่ใช้ในรูปของไบโอฟิล์ม(Biofilms) ซึ่งส่งผลต่อการกำจัดสารภ newcomรวมไปถึงสารภ newcomที่มีก้นหนึ่งในน้ำเสียที่ออกจากระบบบริโภคขยะมีค่าชีวิตต่ำ(Münch et al., 2005) และในงานวิจัยของ Münch et al. (2005) พบว่าบริเวณบริเวณของพืช(Rhzosphere) ในระบบปฏิสัมพันธ์ระหว่างจุลินทรีย์กับต้นพืชจะส่งผลต่อการเจริญเติบโตของจุลินทรีย์ชนิดใช้อากาศ แต่ไม่เกินกว่าปฏิกิริยาที่สัมพันธ์ระหว่างพืชและจุลินทรีย์ในระบบปฏิสัมพันธ์ป้องกันสารในน้ำไหลเข้าสู่ระบบปฏิสัมพันธ์

3. ประสิทธิภาพของระบบการชีวภาพในการกำจัดฟอสเฟต

จากการทดลองนั้นต้นที่โลกของสิ่งเสริมที่เข้าสู่ระบบการชีวภาพของตัว 4 ทรัพย์มันค์พบว่าน้ำที่ไม่ชอบสิ่งเสริมที่เข้าสู่ระบบการชีวภาพของตัวที่ 1, 2, 3 และ 4 ในระยะเวลา 30 วัน (ภาพที่ 15) มีค่าฟอสเฟตในน้ำเข้าระบบเสียกับ 0.93±0.12, 0.91±0.14, 1.01±0.82, และ 0.63±0.10 มก./ล. ตามลำดับ ซึ่งเนื่องจากปริมาณปริมาณฟอสเฟตในน้ำเข้าระบบการชีวภาพที่ตัว 4 ทรัพย์มันค์พบว่าทั้ง 4 ทรัพย์มันค์มีค่าเสียปริมาณฟอสเฟตในน้ำเข้าระบบการชีวภาพไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ(One-way ANOVA; p>0.05) และในน้ำออกจา
ระบบกรองชีวภาพของทริทเนี้ยที่ 1, 2, 3 และ 4 มีค่าผลพะพิตในน้ำออกซิเจนเท่ากับ 0.18±0.07, 0.18±0.03, 0.11±0.01 และ 0.09±0.01 มก./ล. ตามลำดับ เมื่อนำค่าเฉลี่ยผลพะพิตในน้ำออกซิเจนจากระบบกรองชีวภาพที่ 4 ทริทเนี้ยแลกเปลี่ยนเรียบเทียบความแตกต่างพบว่าน้ำออกซิเจนจากระบบมีค่าเฉลี่ยผลพะพิตไม่แตกต่างกันทางสถิติที่ 4 ทริทเนี้ย (One-way ANOVA; p>0.05) เผชิญการปลูกหญ้าในระบบกรองชีวภาพที่ 4 โดยไม่พบการเปลี่ยนแปลงของสภาพที่มีอยู่ ส่วนการค้นหาประสิทธิภาพในการกรองผลพะพิตจะใช้วิธีการคำนวณดังสมการที่ 4

\[
\text{ประสิทธิภาพการกรอง} = \frac{\text{ปริมาณผลพะพิตในน้ำเข้า} - \text{ปริมาณผลพะพิตในน้ำออก}}{\text{ปริมาณผลพะพิตในน้ำเข้า}} \times 100
\]

(4)

อย่างไรก็ตามกระบวนการกรองผลพะพิตเกิดได้จากการกระบวนการตกตะกอน การสูญเสียและการเปลี่ยนรูปของผลพะพิตโดยสิ่งมีชีวิต (Bonomo et al., 1997) และในระบบป้องกันผลพะพิตจะเกิดขึ้นโดยการผ่านทางตัวน้ำออกซิเจนในระบบ และการนำกลไกผลพะพิตออกจากการขาดออกซิเจนของผลพะพิตในระบบได้แก่: (1) ออกซิเดชั่นของ Fe และ Al หรือ Ca (Sakadevan and Bavor, 1998) ในระบบกรองสังเคราะห์ 4 ทริทเนี้ยที่ได้รับมีปริมาณผลพะพิตในน้ำออกซิเจนกล่องกรองที่ 4 มีปริมาณผลพะพิตใกล้เคียงกันไม่แตกต่างกันในระบบมีริบหรือไม่มีริบคัดลอก ดังนั้นในการกรองผลพะพิตในน้ำออกซิเจนจำเป็นต้องมีการสูญเสียผลพะพิตในน้ำออกซิเจนระบบปรับปรุงที่น้อยลง ซึ่งมีผลกระทบต่อสัตว์ที่เป็นอันตรายต่อการศึกษาของ Johansson (2006) ที่ทำการทดสอบความสามารถในการชัดขับพะพิตในน้ำเสียของรังสียูวี่ 1
d
อื่น ๆ. ผลการศึกษาการคัดลอกการติดติดไม้สามารถคัดลอกพะพิตในน้ำเสียก็ได้สูงสุด 30-50 บอกที่มีค่าเฉลี่ยที่ท่าไปแล้วแหล่งน้ำที่ชัดเจนเป็นแหล่งน้ำเสียที่เหมาะสมที่มีค่าพะพิตสูงมากกว่า 0.6 มก./ล. ซึ่งที่ 235 (กรมควบคุมมลพิษ) แต่จากค่าปริมาณพะพิตในน้ำออกซิเจนที่ 4 ทริทเนี้ยมีค่าเฉลี่ยกว่า 0.6 มก./ล. แสดงให้เห็นว่าในระบบกรองชีวภาพสามารถกรองผลพะพิตในน้ำได้หลีกเลี่ยงที่ไม่เกิดความเสี่ยงได้.
ภาพที่ 15 ประสิทธิภาพการกำจัดพืชแพร่ของระบบกรองชั่วขณะของ (ก) ทรัพย์เนื้อที่ 1
(ข) ทรัพย์เนื้อที่ 2 (ค) ทรัพย์เนื้อที่ 3 และ (ง) ทรัพย์เนื้อที่ 4
4. ประสิทธิภาพของระบบกรองชีวภาพในการกำจัดอินทรีย์ในไอโอดเจน

จากการทดลองพบว่าไอโอดเจนในสัตว์เครื่องที่ผลิตชีวภาพของทั้ง 4 ทริตมันน์ในระยะเวลา 30 วัน มีปริมาณอินทรีย์ในไอโอดเจน (TKN) ในน้ำเข้าสู่ระบบกรองชีวภาพเหลือเท่ากับ 3.48±0.30, 3.49±0.17, 4.05±0.19 และ 4.02±0.15 มก./ล. ตามลำดับ ซึ่งเมื่อเปรียบเทียบค่าเฉลี่ยของปริมาณอินทรีย์ในไอโอดเจนในน้ำเข้าระบบกรองชีวภาพ 4 ทริตมันน์พบว่าทั้ง 4 ทริตมันน์มีค่าเฉลี่ยปริมาณอินทรีย์ในไอโอดเจนในน้ำเข้าระบบกรองชีวภาพไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) และเมื่อทำการวัดค่าปริมาณอินทรีย์ในไอโอดเจนในน้ำออกจากระบบทั้ง 4 ทริตมันน์พบว่าในน้ำออกจากระบบทั้ง 4 ทริตมันน์ไม่พบปริมาณอินทรีย์ในไอโอดเจนในน้ำออกปลาย (ภาพที่ 16) และการคำนวณประสิทธิภาพในการกำจัดอินทรีย์ในไอโอดเจนแสดงวิธีการคำนวณดังสมการที่ 5

\[
\text{ประสิทธิภาพการกำจัด} = \frac{\text{ปริมาณอินทรีย์ในไอโอดเจนในน้ำเข้า} - \text{ปริมาณอินทรีย์ในไอโอดเจนในน้ำออก}}{\text{ปริมาณอินทรีย์ในไอโอดเจนในน้ำเข้า}} \times 100
\] (5)

ซึ่งสามารถสรุปได้ว่าระบบกรองชีวภาพมีประสิทธิภาพในการกำจัดอินทรีย์ในไอโอดเจนและไอโอดเจนน้อยในไอโอดเจนได้ถึง 100 เบอร์เช่นตัวในแบบที่มีการปลูกหญ้าและไม่มีการปลูกหญ้า โดยผลของการคัดเลือกไ refinement จากกระบวนการแปรเปลี่ยนอินทรีย์ในไอโอดเจนให้กลายเป็นไอโอดเจนน้อย (NH₃) (Savant and DeDatta, 1982) ซึ่งในระบบปัจจุบันเปรียบได้กับการเกิดกระบวนการแปรเปลี่ยนในไอโอดเจนชั้นชั้นกว่าตามระดับความลึกที่เพิ่มขึ้น นับคือกระบวนการแปรเปลี่ยนในไอโอดเจนชั้นจะเกิดขึ้นได้เนื่องตัวเป็นสารที่มีออกซิเจนและมีค่า pH ในช่วง 6.5-8.5 ทำให้ไอโอดเจ็นน้อยลงและเกิดการเกิดกระบวนการในไอโอดเจนชั้น (Nitrification) ภายใต้สภาพที่มีออกซิเจนเช่นกันและเกิดกระบวนการในไอโอดเจนชั้น (Denitrification) โดยกระบวนการในไอโードเจ็นชั้นจะเกิดขึ้นได้ในสภาพแวดล้อมมีค่า pH ช่วง 6.0-8.0 แต่จะเกิดได้ตั้งแต่ค่า pH ช่วง 7.0-7.5 (Saeed and Sun, 2012)
ภาพที่ 16 ปริมาณไนโตรเจนในน้ำเข้าและออกจากระบบกรองชีวภาพของ (ก) ทรีดมันเฟทที่ 1 (ข) ทรีดมันเฟทที่ 2 (ค) ทรีดมันเฟทที่ 3 และ (ง) ทรีดมันเฟทที่ 4
5. ประสิทธิภาพของระบบกรองชีวภาพในการกักจัดในเครื่อง

จากการทดลองในระยะต้นได้พบว่าค่าของสารเคมีด้านซ้ายสู่ระบบกรองชีวภาพทั้ง 4 ทรีตเมนต์ พบว่าค่าของสารเคมีด้านซ้ายสู่ระบบกรองชีวภาพที่ 1, 2, 3 และ 4 ในระยะเวลา 30 วัน (ตารางที่ 17) มีค่าในขั้นตอนเท่ากับ 3.50±0.17, 4.00±0.28, 3.49±0.15 และ 3.87±0.22 มิลลิกรัม/ลิตร ตามลำดับ ซึ่งเมื่อเทียบกับค่าเฉลี่ยของปริมาณในเครื่องในขั้นตอนสู่ระบบกรองชีวภาพทั้ง 4 ทรีตเมนต์ พบว่าทั้ง 4 ทรีตเมนต์มีค่าเฉลี่ยปริมาณในเครื่องในขั้นตอนสู่ระบบกรองชีวภาพไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) และมีค่าในขั้นตอนนี้ในน้ำออกจากการทดลองในระยะเวลา 30 วันของทรีตเมนต์ที่ 1, 2, 3 และ 4 เท่ากัน 5.87±0.48, 6.40±0.46, 6.05±0.33 และ 6.57±0.30 มิลลิกรัม/ลิตร ตามลำดับและเมื่อเปรียบเทียบค่าเฉลี่ยของปริมาณในเครื่องในขั้นตอนสู่ระบบกรองชีวภาพทั้ง 4 ทรีตเมนต์ พบว่าทั้ง 4 ทรีตเมนต์มีค่าเฉลี่ยปริมาณในเครื่องในขั้นตอนสู่ระบบกรองชีวภาพไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (One-way ANOVA; p>0.05) เป็นที่น่าสังเกตว่าทั้งหมดที่มีการทดลองกรองชีวภาพของทุกทรีตเมนต์มีปริมาณในเครื่องเพิ่มขึ้นสูงกว่าปริมาณในเครื่องในขั้นตอนสู่ระบบ โดยคาดว่าจะมีการเกิดกระบวนการในเครื่องในขั้นตอนนี้ในระบบกรองชีวภาพและการคำนวณประสิทธิภาพในการกักจัดในเครื่องแสดงวิธีการคำนวณดังสมการที่ 6

\[
\text{ประสิทธิภาพการกักจัด} = \frac{\text{ปริมาณในเครื่องในน้ำเข้า} - \text{น้ำออก}}{\text{ปริมาณในเครื่องในน้ำเข้า}} \times 100
\]

การกักจัดในกระดั้นด้วยระบบปีปิปลิปป์ส์จะเกิดจากการถูกพอกและซูลูมีตุดซึ่งมานำไปใช้เพื่อการเรียนรู้หรือโดยกระบวนการไนตริฟิเคชัน (Nitrification) ดีนิทริฟิเคชัน (Denitrification) การระเหยของแอมโมเนีย (Ammonia volatilization) และการแลกเปลี่ยนประจุของแอมโมเนีย (Ammonia ion exchange) (Yang et al., 2001) จากการทดลองพบว่าปริมาณในเครื่องในน้ำออกจากการระบบกรองทั้ง 4 ทรีตเมนต์มีค่าในตารางสูงกว่าค่าเฉลี่ยประมาณสี่เท่ากับได้ในระบบกรองทั้ง 4 ทรีตเมนต์ได้เกิดกระบวนการไนตริฟิเคชันซึ่งส่งผลได้จากการ缝隙ของฝุ่น pH ในน้ำออกของทั้ง 4 ทรีตเมนต์และในเครื่องที่เกิดขึ้นได้ถูกกระทำมากที่สุดถึงการจากกระบวนการกรองชีวภาพ เช่นเดียวกับงานวิจัยของ Hatt et al. (2007) ที่ได้ทำการทดสอบความสามารถของวัสดุที่นำมาใช้ในระบบกรองชีวภาพในการกักธรรมดาที่น้ำฝน ซึ่งพบว่าน้ำออกจากการระบบกรอง
ทุกระบบที่มีปริมาณในเครื่องเพิ่มขึ้นกิจจากการสลายตัวของสารอินทรีย์ในโครงการร่วมกับการเกิดกระบวนการในทรัพยากรคืนและในเกษตรเป็นสาเหตุของการที่สามารถเคลื่อนที่ไปกันได้ยากกว่าธาตุสารตัวอื่น (ธรรมวัน, 2551)

6. การเปลี่ยนแปลงค่า pH ของน้ำไหลของสัตว์ขนาดที่เข้าสู่ระบบและออกจากระบบรองซิวภาพ

ในการทดลองในแต่ละวันของการให้น้ำไหลของสัตว์ขนาดที่เข้าและน้ำออกจากระบบรองซิวภาพจะเห็นค่า pH เป็นระยะเวลา 30 วัน (ดังแสดงในตารางที่ 18) จากการทดลองพบว่า ทรัพยากรคืนที่ 1, 2, 3 และ 4 มีค่า pH น้ำเข้าสู่ระบบของซิวภาพเหลือหก 7.91±0.07, 7.64±0.05, 8.10±0.03 และ 7.77±0.07 ตามลำดับ ซึ่งอยู่ในช่วงที่มีค่าเป็นกลางถึงเป็นด่างและน้ำออกจากระบบของซิวภาพมีค่า pH เหลือหก 7.31±0.06, 6.90±0.06, 7.31±0.05 และ 6.80±0.05 ตามลำดับ ซึ่งอยู่ในช่วงที่มีค่าเป็นกลางถึงเป็นกรดอ่อน ๆ การที่น้ำออกจากระบบที่ซิวภาพมีค่า pH ลดลงต่ำกว่า 8 ซึ่งเป็นส่วนที่สำคัญในการเกิดในทรัพยากรคืน และเรื่องแรกจากการเปลี่ยนรูปของแมขาวันละเป็นกรดในช่วงใน čรรจ์ (Yalcuk และ Ugurlu, 2009) ในการแสดงน้ำเท่านั้นดังที่การทดลองค่า pH ในน้ำเข้าและออกจากระบบที่ซิวภาพเพื่อใช้ในการศึกษาการเกิดกระบวนการต่าง ๆ ที่อาจเกิดขึ้นในระบบรองซิวภาพได้แก่ค่า pH นั้นสอดคล้องกับการเปลี่ยนรูปของในโปรแกรม การเคลื่อนย้ายของแม่วันละเป็นกรด ผลจากการดูแลเชื้อพิษ และปฏิกิริยาทางเคมีต่าง ๆ ที่อาจเกิดขึ้นในน้ำ

7. ค่าความเข้มข้นคัดเม็ดเป็นน้ำไหลของสัตว์ขนาดที่เข้าและออกจากระบบที่ซิวภาพ

จากการทดลองในระยะน้ำไหลของสัตว์ขนาดที่มีคัดเม็ดเข้าสู่ระบบของซิวภาพ โดยในน้ำเข้าสู่ระบบของทรัพยากรคืนที่ 3 และ 4 ทั้ง 30 วันมีค่าคัดเม็ดเข้าสู่ระบบของซิวภาพกรด และเป็นกรด 3.55±0.19 และ 3.09±0.48 มก./ล. ตามลำดับ ซึ่งในแต่ละวันมีน้ำไหลของสัตว์ขนาดที่เข้าสู่ระบบของซิวภาพและประมาณ 40 ล. ถึงระยะเวลา 30 วัน น้ำเท่ากันค่ารวมคัดเม็ดของน้ำเข้าสู่ระบบของซิวภาพและประมาณ 40 ล. ที่ 3 และ 4 จะมีปริมาณคัดเม็ดประมาณ 4,020±228 และ 3,708±576 มก. ตามลำดับ อย่างไรก็ตามจากผลการวิเคราะห์คัดเม็ดเป็นน้ำออกจากระบบของซิวภาพของทรัพยากรคืนที่ 3 และ 4 น้ำคล้ายน้ำไม่พบคัดเม็ดในน้ำที่ออกจากระบบรองซิวภาพ และแสดงให้เห็นว่าน้ำมีค่าคัดเม็ดเป็นน้ำที่ขึ้น_strcmp(115374,121196)ือว่าในน้ำออกจากระบบที่ซิวภาพและพบคัดเม็ดในน้ำไหลของสัตว์ขนาดที่ถูกเจริญไว้ในชั่วโมง โดยกระบวนการดูดซับของน้ำทะเลของสารอินทรีย์ในน้ำ (Sun และ Davis, 2007)
ภาพที่ 17 ปริมาณไอในเครื่องในน้ำแข็งและน้ำอุ่นจากระบบกรองชีวภาพของ (ก) หัวเดือนที่ 1
(ข) หัวเดือนที่ 2 (ค) หัวเดือนที่ 3 และ (ง) หัวเดือนที่ 4
ภาพที่ 18 ค่า pH ในน้ำเข้าและออกจากระบบกรองชิวภาพของ (ก) ทริเดนเนอร์ที่ 1 (ข) ทริเดนเนอร์ที่ 2 (ค) ทริเดนเนอร์ที่ 3 และ (ง) ทริเดนเนอร์ที่ 4
คุณสมบัติทางเคมีของดิน

1. ลักษณะเนื้อดิน

ในการทดลองได้ทำการวิเคราะห์ลักษณะของเนื้อดินที่นำมาใช้ในกระบวนการซื้อผ้าและพบว่าดินที่นำมาใช้ในการทดลองมีอนุภาคกว้าง 75.68 เบอร์เช่นดี อนุภาคเชิงลึก 13 เบอร์เช่นดีและอนุภาคต้นLabelText 11.32 เบอร์เช่นดี ซึ่งเมื่อมีบวกค่าตัวเลขที่ได้เป็นเบอร์เช่นดีของกลุ่มชนิดแตกต่างกันไปเป็นทางประสบการณ์ติดตามสามเหลี่ยมเนื้อดิน (Soil Texture Triangle) พบว่าเป็นเนื้อดินประเภทดินร่วนโปร่งแปร (Sandy loam)

2. ค่า pH ในดิน

ในการทดลองได้ทำการวิเคราะห์ค่า pH ของดินด้วยวิธีการที่มีอยู่ในกรุ๊ปที่ 1 มีค่า pH เริ่มต้นเท่ากับ 7.01 ซึ่งอยู่ในช่วงเป็นกรดเล็กน้อยและเนื้อสุทธิการทดลองมีค่า pH เพิ่มขึ้นเป็น 7.74 ซึ่งอยู่ในช่วงเป็นกรดเล็กน้อยและเนื้อสุทธิการทดลองมีค่า pH เพิ่มขึ้นเป็น 6.87 ซึ่งอยู่ในช่วงเป็นกรดกลาง สิ่งที่ตั้งแทนค่าที่ 3 มีค่า pH เริ่มต้นเท่ากับ 7.63 ซึ่งอยู่ในช่วงเป็นกรดกลางและเนื้อสุทธิการทดลองมีค่า pH เพิ่มขึ้นเท่ากับ 7.69 ซึ่งจัดอยู่ในช่วง เป็นต่างอย่างและน้ำที่ตั้งแทนค่าที่ 4 มีค่า pH เริ่มต้นเท่ากับ 6.12 ซึ่งอยู่ในช่วงเป็นกรดเล็กน้อย และเนื้อสุทธิการทดลองมีค่า pH เพิ่มขึ้นเท่ากับ 6.81 ซึ่งค่าอยู่ในช่วงเป็นกลาง จะเห็นได้ว่าเมื่อดินสุทธิ การทดลองมี pH ในสิ่งที่ตั้งแทนแล้วจะมีค่าสูงขึ้นอาจเป็นเพราะการแตกตัวของแคลเซียมในโครง (ไส้เล็ก) ซึ่งจะแซมลงมาก่อนจะส่งผลต่อค่าค่า pH ของดินโดยจะทำให้ดินมีค่า pH เพิ่มสูงขึ้น (กรมพัฒนาที่ดิน, 2558) โดยทั่วไปแล้วพืชต่างชนิดกุ้งเจริญเติบโตได้ในระดับ pH ที่แตกต่างกัน เช่น พืชละอุ่นสุทธิของดินที่เป็นกรดสิ้นต่าง เล็กน้อย มันฝรั่งและมัน_reciprocals ubiquitous ที่เป็นกรด местที่มีได้ดีที่ช่วง pH 6.0-7.0 (เกษตรย์ จากวิชาปฏิทิพย์, 2548) ถึงแม้ว่าค่า pH ของดินเริ่มต้นการทดลองจะไม่แตกต่างอย่างจัดอยู่ในช่วงค่า pH ที่หน้าที่ 3 ชนิดสามารถที่จะเจริญเติบโตได้ (มหาชน, 2539)
3. ค่าความชื้นในดิน

จากการทดลองได้ทำการวิเคราะห์ค่าความชื้นในดิน (ภาพที่ 20) พบว่าค่าของการทดลองในทริดแม่น้ำที่ 1, 2, 3 และ 4 มีค่าความชื้นก่อนการทดลองเท่ากับ 14.90, 1.88, 18.15 และ 3.68 เปอร์เซ็นต์ตามลำดับ และเมื่อสูตรการทดลองดินทริดแม่น้ำที่ 1, 2, 3 และ 4 มีค่าความชื้นเพิ่มขึ้นเท่ากับ 22.61, 23.55, 20.09 และ 19.30 เปอร์เซ็นต์ตามลำดับ และเมื่อนำค่าน้ำค่าความชื้นในดินที่เพิ่มขึ้นมาคิดเป็นเปอร์เซ็นต์ได้มีค่าเท่ากับ 7.71, 21.67, 1.94 และ 15.62 เปอร์เซ็นต์ตามลำดับ โดยดินในทริดแม่น้ำที่ 2 และ 4 ที่ไม่มีการปลูกหญ้ามีค่าเปอร์เซ็นต์ความชื้นในดินเพิ่มขึ้นสูงกว่าดินในทริดแม่น้ำที่ 1 และ 3 ที่มีการปลูกหญ้า ทั้งนี้คาดว่าเป็นเพราะการเจริญเติบโตของหญ้าที่เข้าไปพื้นดินช่วยลดการระเหยของน้ำในดินจากแสงแดดและจะช่วยกักคุณภาพอากาศที่จะไหลผ่านสู่ดินช่วยลดการระเหยของน้ำได้ ผลกระทบของน้ำในดิน (ส่วนบุคคลไทย, 2558) และความสามารถในการกักเก็บความชื้นของดินจะช่วยยับยั้งสมบัติทางกายภาพของดินที่ส่งผลต่อการส่งของน้ำ ได้แก่ ลักษณะของน้ำดิน โครงสร้างของดิน การอัดดันของดิน ขั้นทีน้ำ ความลาดเอียงและระดับอินทรีย์วัสดุในดิน (กรมการยี่ภูมิวิทยา, 2548)
ภาพที่ 20 ค่าปริมาณความชื้นในดินก่อนและหลังการทดลองของชั้น 4 ทรรศนิยม

4. ปริมาณในดินก่อนการทดลอง

จากการทดลองได้ทำการวิเคราะห์ค่าปริมาณในดินก่อนการทดลอง (ภาพที่ 21) พบว่าทรรศนิยมที่ 1 มีปริมาณในดินก่อนการทดลองเท่ากับ 7.09 มก. กก. และเมื่อสุญเสียการทดลองมีปริมาณในดินเพิ่มขึ้นเป็น 12.08 มก. กก. ทรรศนิยมที่ 2 มีปริมาณในดินก่อนการทดลองเท่ากับ 8.08 มก. กก. และเมื่อสุญเสียการทดลองมีปริมาณในดินเพิ่มขึ้นเป็น 12.91 มก. กก. ทรรศนิยมที่ 3 มีปริมาณในดินก่อนการทดลองเท่ากับ 6.09 มก. กก. และเมื่อสุญเสียการทดลองมีปริมาณในดินเพิ่มขึ้นเป็น 7.74 มก. กก. และในทรรศนิยมที่ 4 มีปริมาณในดินก่อนการทดลองเท่ากับ 7.98 มก. กก. และเมื่อสุญเสียการทดลองมีปริมาณในดินเพิ่มขึ้นเป็น 9.29 มก. กก.

เมื่อนำค่าปริมาณเพื่อหาปริมาณในดินที่คงเหลือในระบบที่ทดลองพบว่าในระบบที่มีสูงที่สุดเป็น 208.24 มก. ในดินทรรศนิยมที่ 1, 2, 3 และ 4 จะมีปริมาณในดินเท่ากับ 1,476.42, 1,682.58, 1,268.18, และ 1,661.75 มก. ตามลำดับและเมื่อสุญเสียการทดลองจะมีปริมาณในดินที่คงเหลือเท่ากับ 2,515.53, 2,688.38, 1,611.78 และ 1,934.54 มก. จากผลการทดลองพบว่าดินในระบบที่ทดลองของทรรศนิยมที่ 1, 2, 3 และ 4 มีปริมาณในดินเพิ่มขึ้นเท่ากับ 1,039.11, 1,005.80, 343.6 และ 272.79 มก. ตามลำดับ โดยคาดการณ์ในทรรศนิยมที่มีการทดลองด้วยน้ำสั่งเคราะห์ที่มีผลแตกต่าง
(ทริตเน็ทที่ 3 ไม่มีหัวข้อและ 4 มีหัวข้อ) กิจกรรมของจุลินทรีย์ในต้นได้รับผลกระทบจากเศษเมื่อส่งผลให้จุลินทรีย์ในต้นมีกิจกรรมลดลงอย่าง (Bianucci et al., 2013)

โดยทั่วไปแล้วคือได้รับในกระบวนการจากการจำเกิดต่างๆ เช่น กิจกรรมของจุลินทรีย์ที่ตระกูลในต้นจากกระบวนการ การเปลี่ยน เป็นดีก์ แต่ในต้นที่พืชสามารถนำไปใช้ได้นั้นจะต้องอยู่ในรูปของอนินทรีย์ในต้นกลวิน (Inorganic Nitrogen; NO₃⁻ และNH₄⁺) โดยอนินทรีย์ในต้นจะได้มาจากกิจกรรมของจุลินทรีย์ในต้นที่มีกิจกรรมอยู่แปลงอนินทรีย์ในต้น (Organic Nitrogen) ที่อยู่ในอินทรีย์วัสดุในต้น (Soil Organic Matter) โดยกระบวนการแปลงคือผ่านในต้น (Ammonification) โดยอนินทรีย์ที่ได้ในต้นกลวินไม่เพียงแค่จะเข้าไปเป็นสารอินทรีย์ในต้นอาจได้มาจากกระบวนการแปลงเนื้อเยื่อ (NH₄⁺) จากนั้นจุลินทรีย์กลวินในต้นจะเริ่มทำการเปลี่ยนแปลงเนื้อเยื่อให้กลายเป็นเนื้อเยื่อ (NO₃⁻) ผ่านกระบวนการคือในต้น (Nitrification) ซึ่งส่งผลกระบวนการจะเกิดขึ้นได้ในสภาพที่มีอากาศ ถ้าในต้นอยู่ในสภาพไม่มีอากาศจุลินทรีย์กลุ่มต้นได้เตรียมตัวที่จะทำการเปลี่ยนแปลงเนื้อเยื่อให้กลายเป็นเนื้อเยื่อ (NO₂⁻) แต่กระบวนการคือในต้น (Denitrification) (Saeed and Sun, 2012) ซึ่งกระบวนการนี้เกิดขึ้นกระบวนการดีในต้น (Diffusion) (NaNO₃) ที่เดิมจะหายไปน้ำในต้นก็จะลดลง

5. ปริมาณไนโตรเจนในต้น

จากการทดลองได้ทำการวิเคราะห์ค่าปริมาณไนโตรเจน (TKN) ในต้น (ภาพที่ 22) พบว่ามีการเปลี่ยนแปลงในไนโตรเจนในต้นที่ 1 มีปริมาณไนโตรเจนในต้นเท่ากับ 0.019 เบอร์เข้นที่สังเกติได้ว่ามีไนโตรเจนที่มีระดับในไนโตรเจนในต้นและเริ่มต้นสูตรการทดลองพบว่ามีปริมาณไนโตรเจนในไนโตรเจ็นเพิ่มขึ้นเป็น 0.022 เบอร์เข้นที่สังเกติได้ว่ามีไนโตรเจนที่มีระดับในไนโตรเจนในต้นเท่ากับ 0.025 เบอร์เข้นที่สังเกติได้ว่ามีไนโตรเจนที่มีระดับในไนโตรเจนในต้นเท่ากับ 0.026 เบอร์เข้นที่สังเกติได้ว่ามีไนโตรเจนที่มีระดับในไนโตรเจนในต้นเท่ากับ 0.025 เบอร์เข้นที่สังเกติได้ว่ามีไนโตรเจนคิดเป็นที่มีระดับในไนโตรเจนในต้นเท่ากับ 0.034 เบอร์เข้นที่สังเกติได้ว่ามีไนโตรเจนที่มีระดับในไนโตรเจนในต้นเท่ากับ 0.038 เบอร์เข็นที่สังเกติได้ว่ามีไนโตรเจนที่มีระดับในไนโตรเจนในต้นและมีสูตรสูตรการทดลองมีปริมาณไนโตรเจน
ในดินเพิ่มขึ้นเป็น 0.042 เบอร์เช่นจะจัดได้ถูกต้องในเกณฑ์ดินที่มีระดับในโดยจะส่งเสริมตามเกณฑ์ 1, 2, 3 และ 4 มีปริมาณในระดับเพิ่มขึ้นเท่ากับ 0.006, 0.004, 0.009 และ 0.004 เบอร์เช่นเพิ่มขึ้นตามเกณฑ์ แต่ยังจัดได้ถูกต้องในเกณฑ์ดินที่มีระดับในโดยจะส่งเสริมดินเกณฑ์นั้นเป็นเพราะสิ่งแวดล้อมของเนื้อดินที่ใช้ในการทดลองมีปริมาณอินทรีย์ตัวอยู่ในดินต่างชื่อฮินทรีย์ในโครงสร้างของดินรวมถึงอินทรีย์ (อรรฐมน, 2551) และเป็นที่น่าสังเกตาว่าดินใน ทริคเนื้อที่ 1 และ 3 (ไม่มีหลุม) จะมีการเพิ่มขึ้นของโครงสร้างมากที่สุด น้ำเนื่องเพราะโครงสร้างถูกกระเทาะกับเก็บไว้ในชั้นดินต่ำและแม่น้ำมีการปลูกพืชใหญ่ในชั้นดินของทริคเนื้อที่ 2 และ 4 มีปริมาณอินทรีย์เพิ่มมากขึ้นและทำให้เกิดการย่อยสลายไมโครเจี๋ยมกลับเป็นธาตุอาหารเพื่อใช้เพิ่มมากขึ้น (แมทเทส-แลนด์รี่ นิทฯ., 2009) ซึ่งแสดงให้เห็นในทริคเนื้อที่มีการปลูกหญ้า (ทริคเนื้อที่ 2 และ 4) มีปริมาณน้ำในโดยจะส่งเสริมน้อยกว่าการปลูกหญ้า (ทริคเนื้อที่ 1 และ 3)

![Image]

ภาพที่ 21 ปริมาณน้ำในดินก่อนและหลังการทำดินของที่ 4 ทริคเนื้อที่
6. ปริมาณพฤกษพืชที่เป็นประโยชน์ในดิน

จากการทดลองได้ทำการวิเคราะห์ปริมาณพฤกษพืชที่เป็นประโยชน์ในดินก่อนและหลังการทดลอง (ภาพที่ 23) พบว่าในดินก่อนและหลังการทดลองมีปริมาณพฤกษพืชที่เป็นประโยชน์สูงขึ้นในดินน้อยมากเนื่องมาจากต้นที่มีปริมาณพฤกษพืชที่เป็นประโยชน์สูงกว่า 45 มก./พืช/กก.ดิน และต้นที่มีปริมาณพฤกษพืชที่เป็นประโยชน์ในดินน้อยกว่า 3 มก./พืช/กก.ดิน จึงถูกตัดเจ้าเป็นต้นที่มีปริมาณพฤกษพืชที่เป็นประโยชน์จำนวนมาก โดยพบว่าในดินของการทดลองที่ 1 มีปริมาณพฤกษพืชที่เป็นประโยชน์ในดินก่อนและหลังการทดลองเท่ากับ 0.5157 และ 0.6257 มก./พืช/กก.ดิน ตามลำดับ ส่วนดินก่อนและหลังการทดลองของดินที่ 2 มีปริมาณพฤกษพืชที่เป็นประโยชน์เท่ากับ 0.4364 และ 0.5029 มก./พืช/กก.ดิน ตามลำดับ ส่วนดินก่อนและหลังการทดลองของดินที่ 3 มีปริมาณพฤกษพืชที่เป็นประโยชน์เท่ากับ 0.4604 และ 0.5890 มก./พืช/กก.ดิน ตามลำดับ และดินที่ 4 มีปริมาณพฤกษพืชที่เป็นประโยชน์ในดินก่อนและหลังการทดลองเท่ากับ 0.3551 และ 0.4126 มก./พืช/กก.ดิน ตามลำดับ เมื่อนำค่าเฉลี่ยปริมาณพฤกษพืชที่เป็นประโยชน์ในดินของดินนี้มาพิจารณา ได้ผลข้อมูลเพียง 208.29 กิโลกรัมพืช/กก.ดิน จึงพบว่าก่อนการทดลองในดินทรัพน์ที่ 1, 2, 3 และ 4 มีปริมาณพฤกษพืชที่เป็นประโยชน์เท่ากับ 107.39, 90.88, 95.87 และ 73.95 มก. ตามลำดับและเมื่อ
ลัตานุรักษ์ต้องมีปริมาณพอสมควรที่เป็นประโยชน์ในต้นทุนทำกับ 130.30, 104.72, 122.65 และ 85.92 มก.ตอต้น โดยจัดทำจากผลการทดลองพบว่าต้นของทรีด้านล่างที่ 1, 2, 3 และ 4 มีปริมาณพอสมควรที่เป็นประโยชน์ในต้นทุนเพิ่มขึ้นทำกับ 22.9, 13.84, 26.78 และ 11.97 มก. ตอต้น อย่างไรก็ตามเป็นที่ผ่านมาถึงระหว่างปริมาณพอสมควรที่เป็นประโยชน์ในต้นของทรีด้านล่างที่ 1 และ 3 (ไม่มีเหยี่ยง) จะมีปริมาณเพิ่มขึ้นมากกว่าต้นในทรีด้านล่างที่ 2 และ 4 (มีเหยี่ยง) คาดว่าจะเป็นเพราะพอสมควรที่ถูกกัดหัวเรื่อนบางต้นและกิจกรรมบางต้นที่สูงในช่วงการน้ำทำให้การเจริญเติบโต (Bratieres et al., 2008)

![Image](image.png)

ภาพที่ 23 ปริมาณพอสมควรที่เป็นประโยชน์ในต้นทุนทำกับและหลังการทดลองทั้ง 4 ทรีด้านล่าง

7. อินทรีย์วัตถุในต้น

จากการทดลองได้ทำการวิเคราะห์ค่าปริมาณอินทรีย์วัตถุในต้น (ภาพที่ 24) พบว่าในต้นก่อนการทดลองของทรีด้านล่างที่ 1 มีปริมาณอินทรีย์วัตถุในต้นก่อนและหลังการทดลองทำกับ 0.61 และ 0.62 เบอร์เซนต์ตามลำดับ ส่วนต้นในทรีด้านล่างที่ 2 ก่อนและหลังการทดลองมีปริมาณอินทรีย์วัตถุทำกับ 0.68 และ 0.71 เเบริเซนต์ตามลำดับ ส่วนต้นในทรีด้านล่างที่ 3 มีปริมาณอินทรีย์วัตถุในต้นก่อนและหลังการทดลองทำกับ 0.60 และ 0.55 เบอร์เซนต์ตามลำดับ และต้นในทรีด้านล่างที่ 4 มีปริมาณอินทรีย์วัตถุทำกับ 0.69 และ 0.64 เเบริเซนต์ตามลำดับ ดินโดยทั่วไปจะถูกกัดทำให้ถูกในต้นที่
มีระดับอินทรีย์ที่ต่ำสุดจะต้องมีค่าอินทรีย์วัตถุดิบในติดมากกกว่า 4.5 เปรอร์เซ็นต์ขึ้นไปและตินที่มีปริมาณอินทรีย์วัตถุดิบในตินส่วนส่วนต่าง ๆ
ของอินทรีย์วัตถุดิบในตินระหว่าง 0.5-1.5 เปรอร์เซ็นต์จะถูกจัดให้อยู่ในเกณฑ์ตินที่มีอินทรีย์วัตถุดิบตัว การที่ตินที่น้ำมันไขมันในการทดสอบมีค่าอินทรีย์วัตถุดิบในตินสำนักเบื้องต้นเนื่องมาจากกลักษณ์ของนีลตินที่มีลักษณะเป็นตินร่วมกับทรายและมีค่าอุณหภูมิเหนือหน้านายมาก ซึ่งอนุภาคตินเหนือนั้นจะเป็นแหล่งของการอินทรีย์ที่อยู่ในติน (คณะการพลังงาน, 2548)
8. ความสามารถในการแยกคัดเลือกประจุบางกลุ่มของติน
จากการทดลองได้ที่การวิเคราะห์ความสามารถในการแยกคัดเลือกประจุบางกลุ่มของตินตัวอย่าง
ทั้ง 4 ทริมานั้น (ภาพที่ 25) ผลการทดลองพบว่าตินตัวอย่างของทริมานั้นที่ 1 มีความสามารถในการ
แยกคัดเลือกประจุบางกลุ่มของตินเท่ากับ 6.30 และมีสัมประสิทธิ์/100 กรัมตินตามลำดับ สำหรับ
ก้อนและหลักการทดลองของทริมานั้นที่ 2 มีค่าความสามารถในการแยกคัดเลือกประจุบางกลุ่มเท่ากับ
5.80 และ4.87 มีสัมประสิทธิ์/100 กรัมตินตามลำดับ สำหรับก้อนและหลักการทดลองของ
ทริมานั้นที่ 3 มีค่าความสามารถในการแยกคัดเลือกประจุบางกลุ่มเท่ากับ 5.09 และ5.88 มีสัมประสิทธิ์/100
กรัมตินตามลำดับ และก้อนก้อนและหลักการทดลองของทริมานั้นที่ 4 มีค่าความสามารถในการ
แยกคัดเลือกประจุบางกลุ่มเท่ากับ 14.83 และ6.25 มีสัมประสิทธิ์/100 กรัมตินตามลำดับ ดินโดยทั่วไปที่มี
ค่าความสามารถในการแยกคัดเลือกประจุบางกลุ่มน้อยกว่า 10 มีสัมประสิทธิ์/100 กรัมตินจะถูกจัดเป็นติน
ที่มีค่าความสามารถในการแยกคัดเลือกประจุบางกลุ่มมากก่อนและตินที่มีค่าความสามารถในการ
แยกคัดเลือกประจุบางกลุ่มระหว่าง 15-25 มีสัมประสิทธิ์/100 กรัมตินจะถูกจัดเป็นตินที่มีค่าความสามารถ
ในการแยกคัดเลือกประจุบางกลุ่มมาก การที่ตินที่ใช้ในการทดสอบมีค่าการแยกคัดเลือกประจุบางกลุ่มของ
ตินอยู่ในระดับต่ำนั้นเนื่องมาจากเนื้อตินของอนุภาคตินเหนืออยู่ในบริเวณเนื้อซึ่งเรียกว่าเชิงเส้นที่มีค่า
อนุภาคเหนือที่จะเป็นบริเวณที่เกิดการแยกคัดเลือกประจุบางกลุ่มของตินตัวอย่าง
และเป็นที่น่าสนใจว่าตินในทริมานั้นที่มีการปลูกหญ้าจะมีค่าการแยกคัดเลือกประจุบางกลุ่มของตินต่ำลง
ส่วนตินในทริมานั้นที่ไม่มีการปลูกหญ้าจะมีค่าการแยกคัดเลือกประจุบางกลุ่มของตินเพิ่มมากขึ้นทันที
เนื่องจากหญ้าที่มีการใช้สารอาหารที่อยู่ในตินส่งผลให้ตินที่มีการปลูกหญ้ามีปริมาณธาตุอาหารลง
ทำให้ค่าการแยกคัดเลือกประจุบางกลุ่มของตินมีค่าลดลง (อัจรัส, 2551) การแยกคัดเลือกประจุบางกลุ่มของ
ตินจึงจะมีผลต่อการอุ่นตัวด้านเหนือบนติน
ภาพที่ 24 ปริมาณอินทรีย์ตัวในสิ่งก่อและหลั่งจากการทดลองของทั้ง 4 ทรัพย์นันท์

ภาพที่ 25 ค่าความสมการในการแตกเปลี่ยนจากรุกจุดก่อนและหลั่งจากการทดลองของทั้ง 4 ทรัพย์นันท์
9. ปริมาณแคคเมียมในต้น

จากการทดลองได้ทำการวิเคราะห์ปริมาณแคคเมียมในต้นอย่างกว้างในต้นก่อนการทดลองทั้ง 4 ทริบเน้นไม่พบว่ามีแคคเมียมสะสมอยู่ในต้น และเมื่อสินสุดการทดลองพบว่าทริบเน้นที่ 3 และ 4 มีแคคเมียมสะสมอยู่ในต้นมากกว่า 19.24 และ 17.36 มม./กิโลกรัม ตามลำดับ ซึ่งในกลุ่มทดลองมีต้นอัดแน่นที่ 208.24 ต้น/กิโลกรัม เนื่องจากอันตรีย์เน้นที่ 3 และ 4 จะมีปริมาณแคคเมียมในต้นที่มากกว่ากันถึง 4,066.54 และ 3,615.05 มม. ตามลำดับ ดังนั้นเมื่อสินสุดการทดลองจะมีผลต่อต้นต้นที่มีแคคเมียมมากขึ้นจะทำให้แคคเมียมถูกดูดซับไปยังต้นต้นที่มีแคคเมียมน้อยลง ดังนั้นเมื่อสินสุดการทดลองได้เสร็จสิ้นกันที่ราคาน้ำของต้นพืช เช่น แคคเมียมแมกนีเซียม แมกนีเซียม เป็นต้น (อัปปาร์น์, 2551; ณัฐชัย, 2548)

การเปลี่ยนแปลงทางเจริญเติบโตของทุ้ง

1. อัตราการเจริญเติบโตของทุ้ง

จากการทดลองได้ทำการวัดความสูงของทุ้งเป็นระยะเวลานาน 30 วัน โดยทำการวัดความสูงทุ้งๆ 5 วัน ซึ่งเริ่มต้นจากความสูงของทุ้งก่อนวัน 10 ต้น (ภาพที่ 26) พบว่าความสูงที่เพิ่มขึ้นของทุ้งที่ปลูกในทริบเน้นที่ 2 (ระดับตัวน้ำใกล้พื้นดิน ชั้นบนพื้นที่ไม่สะสมแคคเมียม) ในวันที่ 1, 5, 10, 15, 20, 25 และ 30 มีความสูงเพิ่มขึ้นอย่างมากกับ 0.0±0.0, 1.0±0.5, 3.9±2.2, 5.2±3.5, 5.8±3.0, 5.6±3.0 และ 7.4±3.8 มม. ตามลำดับ และทริบเน้นที่ 4 มีความสูงของทุ้งเพิ่มขึ้นจากวันแรกของการทดลองวันที่ 1, 5, 10, 15, 20, 25 และ 30 เฉลี่ยเท่ากับ 0.0±0.0, 11.3±4.1, 39.2±6.2, 51.8±8.6, 52.1±3.3, 58.4±13.8 และ 70.1±14.4 มม. ตามลำดับ แต่เห็นได้ว่าทุ้งที่มีความสูงอุดพื้นช้าตามระยะยาวที่เพิ่มขึ้น ทุ้งที่มีใน ทริบเน้นที่ 2 ซึ่งไม่มีการเติมแคคเมียมจะมีความสูงของทุ้งที่เพิ่มขึ้นจากวันแรกของการทดลองมากกว่าทุ้งในทริบเน้นที่ 4 ซึ่งมีการเติมแคคเมียมไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (ANOVA; p>0.05) เช่นเดียวกับงานวิจัยของ Sandalio et al. (2001) ที่พบว่าแคคเมียมส่งผลกระทบต่อการเจริญเติบโตของราคาต้นสั้น (Pisum sativum L., cv. Lincoln) และจะส่งผลกระทบมากยิ่งขึ้นตามระดับความเข้มข้นของแคคเมียมที่เพิ่มมากขึ้น
2. ปริมาณโคโลโรฟิลล์และชีว

ในการทดลองได้ทำการวิเคราะห์ค่าปริมาณโคโลโรฟิลด์ก่อนและหลังการทดลอง จากผลการทดลองพบว่าค่าปริมาณโคโลโรฟิลด์ที่ 2 และ 4 มีปริมาณโคโลโรฟิลด์รวมเท่ากับ 1.9918 และ 1.8555 มก./ก.น้ำหนักใบติดตามตาราง เมื่อสูงสุดการทดลองที่ 2 และ 4 มีปริมาณโคโลโรฟิลด์รวมเท่ากับ 2.6561 และ 2.6160 มก./ก.น้ำหนักใบติดตามตาราง (ภาพที่ 27) เมื่อเปรียบเทียบจะพบว่าปริมาณโคโลโรฟิลด์ของหน้าที่ 2 ทรีตเมนต์มีปริมาณโคโลโรฟิลด์เพิ่มขึ้น

ผลนี้สอดคล้องกับผลการวิจัยของ Sandalio et al. (2001) ที่พบว่าค่าปริมาณโคโลโรฟิลด์ด้านล่างของพืช (Pism sativum L., cv. Lincoln) และจะมีผลต่อการสร้างการสังเคราะห์แสงและปริมาณโคโลโรฟิลด์ของต้นไม้ ทั้งค่าปริมาณโคโลโรฟิลด์ในด้านล่างของพืชที่มีผลต่อการสังเคราะห์แสงและปริมาณโคโลโรฟิลด์ก็มีผลต่อการสร้างการสังเคราะห์แสงและปริมาณโคโลโรฟิลด์ด้านล่างของพืช (DIGICON, Model: LX-73) พบว่าในระยะเวลานานกลางวันในห้องมีค่าความเข้มแสงช่วง 3,015-55,400 Lux และค่าความเข้มแสงกลางอากาศต่ออัตราการเจริญเติบโตเช่นกัน
ภาพที่ 27 ปริมาณลดโลกร้อนต่อหน่วยกิโลกรัมที่ปลูกในบริเวณแผนที่ 2 และ 4

3. ปริมาณแคคเตเนี่ยมในยอดและการสะท้อนของหน้า

จากการทดลองได้ทำการวิเคราะห์ปริมาณแคคเตเนี่ยมที่สะสมอยู่ในยอดและการสะท้อนของหน้าที่ปลูกใน บริเวณแผนที่ 4 ทั้งก่อนและหลังการทดลอง พบว่าหน้าในบริเวณแผนที่ 4 เมื่อเริ่มการทดลองไม่พบแคคเตเนี่ยมทั้งในส่วนของยอดและการสะท้อนสุดสุดการทดลองพบว่าหน้ามีการสะสมแคคเตเนี่ยมทั้งในส่วนยอดและการสะท้อนในปริมาณ 164.75 และ 539.74 มก./ก.ต.น้ำหนักแห้ง ตามลำดับ ซึ่งจะเห็นได้ว่า หน้าสามารถสะสมแคคเตเนี่ยมได้มากกว่าในส่วนของยอดและกับผลการทดลองใน การทดลองที่ 1 เมื่อนำค่าค่าส่วนต่าง Bioconcentration factor (ปริมาณแคคเตเนี่ยมในฟิช/ปริมาณ แคคเตเนี่ยมในติน) จะมีค่าเท่ากับ 0.2217 ซึ่งมีค่าน้อยกว่า 1 ดังนั้นจึงอาจใช้คำ Bioconcentration factor เป็นเกณฑ์ในการตัดสินว่าเป็นฟิช Hyperaccumulator หรือไม่ อยู่ที่ปุ่มจึงไม่มีคุณสมบัติเป็นฟิช Hyperaccumulator (Brook, 1998) แต่ด้วยการวิเคราะห์ที่มีความจุสูงของธาตุแคคเตเนี่ยม น้ำหนักแห้ง ดังนั้นจึงอาจใช้ว่าเป็นเกณฑ์ที่เหมาะสมที่จะยอมรับได้ว่าฟิชชนิดนี้เป็นฟิช Hyperaccumulator ดังนั้นหน้าจะเป็นการทดลองครั้งนี้จะสามารถจัดได้เป็นฟิช Hyperaccumulator ได้
นอกจากนี้เรายังปริมาณแคตเลย์เมอมและสิ่งม้าค่าที่มีเป็นปริมาณแคตเลย์เมอมที่มีในน้ำไหล
ของสิ่งแวดล้อมผ่านในทรีมันท์ที่ 3 และมีปริมาณแคตเลย์เมอมที่มีมากที่สุดที่ 4,020 และ 3,708
มก. ตามลำดับ โดยตรวจพบปริมาณแคตเลย์เมอมในต้นทุ่งขณะของทรีมันท์ที่ 3 และ 4 เท่ากัน 4,006
และ 3,615 มก. ตามลำดับ และในทรีมันท์ที่ 4 พบปริมาณแคตเลย์เมอมในผู้ที่ส่วนยอดและрак
ของหญ้าที่พบพบมากที่สุด 39.71 และ 44.63 ก.น้ำหนักแห้ง ตามลำดับและมีแคตเลย์เมอมรวมทั้งใน
ยอดและจากเท่ากัน 84.34 ก.น้ำหนักแห้ง ดังนั้นจึงสามารถเขียนสมดุลระหว่างแคตเลย์เมอมในระบบ
การชีวภาพได้ดังภาพที่ 28 และตารางที่ 13 ซึ่งพบว่าแคตเลย์เมอมส่วนใหญ่ก็คัดเข้าไปในขั้นตอนและถูก
สะสมไว้ในต้นหญ้าในปริมาณเท่ากับต้นยอดน้ำหนักในและเมื่อทำการวัดความยาวรายการเมื่อสูติการ
ทดลองพบว่าหญ้ามีความยาวรายการเฉลี่ย 8.9 ซม. เมื่อนำมาคิดเป็นอัตราส่วนต่อความสูงของขั้นตอนจะ
เป็นอัตราส่วนเท่ากับ 1:6.85 จากการที่สะสมคัดกลับระหว่างตั้ง ทรีมันท์ที่ 3 และ 4 จะมีปริมาณของ
แคตเลย์เมอมที่หายไปจากปริมาณแคตเลย์เมอมในน้ำเข้าที่หมด จะเป็นเพราะแคตเลย์เมอมบางส่วนถูก
อนุมูลดับคัดขับไว้อย่างหนาแน่นผลผลิตให้เนื่องจากการย่อยของอนุมูลดินจึงปลอดผ่านแคตเลย์เมอม
ออกมากไม่มาก

จากระบบแคตเลย์เมอมในทรีมันท์ที่ 4 น้ำมันค่าครอบบาทปริมาณแคตเลย์เมอมที่ดินหน้าสามารถ
สะสมในส่วนของยอดได้ 39.71 ก.น้ำหนักแห้ง/ 241.08 ก.น้ำหนักแห้ง/ 7,850 ด.ซม. เมื่อเทียบกับที่
เพิ่มขึ้นเป็น 1 ด.ซม. ได้คิดค่าของยอดหญ้าที่ต้องการ 307.11 ก. ซึ่งจะมีปริมาณแคตเลย์เมอมใน
ยอดประมาณ 50.59 ก. ดังนั้นระบบการชีวภาพร่วมกับหญ้าที่ถูกและการปริมาณ
แคตเลย์เมอมออกจากต้นประมาณ 50.59 ก/ 1 ด.ซม/ 30 วัน
ตารางที่ 13 แสดงสมดุลมวลของปริมาณแคลมิเนียมในทรัพย์เนื้อที่ 3 และ 4

<table>
<thead>
<tr>
<th>ส่วนต่างๆ</th>
<th>ทรัพย์เนื้อที่ 3</th>
<th>ทรัพย์เนื้อที่ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ปริมาณแคลมิเนียม</td>
<td>ปริมาณแคลมิเนียม</td>
</tr>
<tr>
<td></td>
<td>(มก.)</td>
<td>(มก.)</td>
</tr>
<tr>
<td>น้ำแข็ง</td>
<td>4,020</td>
<td>3,708</td>
</tr>
<tr>
<td>ยัด</td>
<td>0</td>
<td>39.71</td>
</tr>
<tr>
<td>ราด</td>
<td>0</td>
<td>44.63</td>
</tr>
<tr>
<td>ดิน</td>
<td>4,006</td>
<td>3,615</td>
</tr>
<tr>
<td>อื่นๆ</td>
<td>14</td>
<td>8.66</td>
</tr>
<tr>
<td>น้ำออก</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ภาพที่ 28 ปริมาณแคลมิเนียมในระบบนิเวศของชีวภาพของ (ก) ทรัพย์เนื้อที่ 3 และ (ข) ทรัพย์เนื้อที่ 4
บทที่ 5

สรุปผลการวิจัย

จากการศึกษาประสิทธิภาพของระบบการจัดการข้อมูลภายใต้หลักวิชาการเทคโนโลยีสารสนเทศ สามารถสรุปผลการวิจัยได้ดังนี้

1. จากการทดสอบความสามารถในการเจริญเติบโตของหญ้าแมลงเขี้ยม หญ้าบ้านน้อยและหญ้าที่ปลูกในสารละลายแคลเซียมเชื้อ 1 และ 3 มก./ค. เป็นระยะเวลา 15 วัน ซึ่งในวันที่ 15ของการทดลองพบว่าหญ้าที่ปลูกมีความสูงของยอดเพิ่มขึ้นจากวันแรกของการทดลองมากที่สุดโดยมีความสูงของยอดเพิ่มขึ้นเท่ากับ 65.1±1.7 และ 51.4±0.6 มม. สำหรับหญ้าที่ปลูกในสารละลายแคลเซียมเชื้อ 1 และ 3 มก./ค. ตามลำดับ และพบว่าแคลเซียมไม่ส่งผลต่อความเจริญของหญ้าบ้านน้อย

2. จากการทดสอบความสามารถในการสะสมแคลเซียมของหญ้าแมลงเขี้ยม หญ้าบ้านน้อยและหญ้าที่ปลูกในสารละลายแคลเซียมเชื้อ 1 และ 3 มก./ค. เป็นระยะเวลา 15 วัน โดยวันที่ 15ของการทดลองพบว่าหญ้าที่ปลูกมีความสามารถในการสะสมแคลเซียมในสารละลายและสารละลายที่ตูนได้มากที่สุดเท่ากับ 597.19±2.29 และ 674.10±1.01 มก./ค. สำหรับหญ้าที่ปลูกในสารละลายแคลเซียมเชื้อ 1 และ 3 มก./ค. ตามลำดับ

3. จากการทดสอบประสิทธิภาพในการกำจัดแคลเซียมของหญ้าแมลงเขี้ยม หญ้าบ้านน้อยและหญ้าที่ปลูกในสารละลายแคลเซียมเชื้อ 1 และ 3 มก./ค. เป็นระยะเวลา 15 วัน โดยวันที่ 15ของการทดลองพบว่าหญ้าที่ปลูกมีประสิทธิภาพในการกำจัดแคลเซียมจากสารละลายที่ตูนโดยมีประสิทธิภาพในการกำจัดแคลเซียมเท่ากับ 81.66±0.71 และ 70.14±0.26 เปอร์เซ็นต์สำหรับหญ้าที่ปลูกในสารละลายแคลเซียมเชื้อ 1 และ 3 มก./ค. ตามลำดับ

4. จากผลการทดลองที่ 1 หญ้าที่ปลูกในสารละลายที่ตูนได้รับการใช้ร่วมกับระบบการจัดการข้อมูลจากการศึกษาประสิทธิภาพในการกำจัดของหญ้าแมลงเขี้ยมในน้ำที่ไหลออกจากแหล่งการจัดการระบบการจัดการข้อมูลที่มีผู้และไม่มีผู้ (มีการเติมแคลเซียมและไม่เติมแคลเซียมในน้ำไหลออกจากแหล่งการจัดการ) พบว่าระบบการจัดการข้อมูลที่ 4 หรือแคลเซียมที่มีประสิทธิภาพในการกำจัดของหญ้าแมลงเขี้ยมไม่ต่างกันอย่างมีนัยสำคัญทางสถิติ แต่เป็นไปน้ำที่จะสามารถจัดการระบบการจัดการข้อมูลที่มีการปลูกหญ้าจะมีประสิทธิภาพในการกำจัดของหญ้าแมลงเขี้ยมได้มากกว่าระบบการจัดการข้อมูลที่ไม่มีการปลูกหญ้า
โดยระบบกรองทางชีวภาพที่มีการปลูกหญ้าและไม่มีการปลูกหญ้าจะมีประสิทธิภาพในการกำจัดของเข้าแล้วลดลงประมาณ 85.47 และ 84.17 เปอร์เซ็นต์ตามลำดับ

5. จากผลการทดลองประสิทธิภาพในการกำจัดค่าชีโอดีในน้ำโคลนสองเส้นตรงของระบบกรองทางชีวภาพที่มีหญ้าและไม่มีหญ้า (มีการเดินแค่เมื่อนและไม่ได้เดินแค่เมื่อนในน้ำโคลนของสิ่งแวดล้อม) พบว่าระบบกรองทางชีวภาพที่ 4 หรือต้นนั้นมีประสิทธิภาพในการกำจัดค่าชีโอดีเพียงนิดหน่อยสิ่งแวดล้อมที่มีการปลูกหญ้าจะมีประสิทธิภาพในการกำจัดค่าชีโอดีสูงกว่าระบบกรองทางชีวภาพที่ไม่มีการปลูกหญ้า โดยระบบกรองทางชีวภาพที่มีการปลูกหญ้าและไม่มีการปลูกหญ้าจะมีประสิทธิภาพในการกำจัดค่าชีโอดีเท่ากัน 78.17 และ 75.43 เปอร์เซ็นต์ตามลำดับ

6. จากการทดสอบประสิทธิภาพในการกำจัดพิษสาปในน้ำโคลนสองเส้นตรงของระบบกรองทางชีวภาพที่มีหญ้าและไม่มีหญ้า (มีการเดินแค่เมื่อนและไม่ได้เดินแค่เมื่อนในน้ำโคลนของสิ่งแวดล้อม) พบว่าระบบกรองทางชีวภาพที่ 4 หรือต้นนั้นมีประสิทธิภาพในการกำจัดพิษสาปในน้ำโคลนสองเส้นตรงที่มีตั้งแต่นั้นมีน้ำสีทึบทางสิ่งแวดล้อม ซึ่งระบบกรองทางชีวภาพที่ 4 หรือต้นนั้น (ที่มีแบบที่มีการปลูกหญ้าและไม่ปลูกหญ้า) สามารถกำจัดพิษสาปในน้ำโคลนสองเส้นตรงที่ได้ผลค่าพิษสาปในน้ำออกจากระบบเฉลี่ยประมาณ 0.14 มก./ล.

7. จากการทดสอบประสิทธิภาพของระบบกรองทางชีวภาพที่มีการปลูกหญ้าและไม่ปลูกหญ้า (มีการเดินแค่เมื่อนและไม่ได้เดินแค่เมื่อนในน้ำโคลนของสิ่งแวดล้อม) ในการกำจัดสารอินทรีย์ในน้ำโคลนและในเครื่องในน้ำโคลนสองเส้นตรง พบว่าระบบกรองทางชีวภาพที่ 4 หรือต้นนั้นสามารถกำจัดอินทรีย์ในน้ำโคลนได้ทั้งหมด ส่วนปริมาณในเครื่องในน้ำออกจากระบบกรองทางชีวภาพนั้นพบว่าระบบกรองทางชีวภาพที่ 4 หรือต้นนั้นมีปริมาณในเครื่องในน้ำออกจากระบบกรองทางชีวภาพสูงกว่าปริมาณในเครื่องในน้ำที่เข้าสู่ระบบกรอง และน้ำออกจากระบบกรองที่ 4 หรือต้นนั้นที่ค่า pH คงตัวกว่าน้ำที่เข้าสู่ระบบกรอง

8. จากการทดลองความสามารถในการกำจัดแค่เมื่อนในน้ำโคลนสองเส้นตรงของระบบกรองทางชีวภาพที่มีการปลูกหญ้าและไม่มีการปลูกหญ้าพบว่าแค่เมื่อนถูกคัดกรองในชั้นกรองดินที่แบบและเมื่อมีการปลูกหญ้ารวมทั้งหมดจะเกิดการผลิตเชื้อแบคทีเรียในระยะแรกและของต้นหญ้า และปริมาณแค่เมื่อนที่หญ้าสามารถละลายได้มากจะอยู่ในส่วนของราคา
9. แต่ละเมื่อส่งผลกระทบต่อการเรียนรู้ดีของผู้เรียน โดยส่งผลต่อความสุขภูมิต่ำให้ผู้เรียนที่มีสุขภาพดีมีความสุขภูมิต่ำลง แต่แต่ละเมื่อมีกลับไม่ส่งผลกระทบต่อปริมาณแคลอรี

ฟิสิกส์ของผู้เรียน

ข้อเสนอแนะ

จากการทดสอบประสิทธิภาพของระบบกระชับกระชากกล้ามเนื้อในนักโภชนา
ของสัตว์และพบว่าระบบกระชับกระชากกล้ามเนื้อของนักโภชนาสัตว์ได้แก่
แต่ไม่สามารถกระทำได้ในตัวระบบการนักโภชนาสัตว์ได้เพียงน้อยที่สุดเพื่อให้สัตว์
เกี่ยวกับการเปลี่ยนแปลงของกลุ่มซิลิคิวที่อยู่กลุ่มหนึ่งในตัวระบบสัตว์
หรือทำให้กระชับเพิ่ม
ระยะเวลาในการที่เกิดขึ้นให้ผู้เล่นระบบกระชับกระชากกล้ามเนื้อภายนอกชุด
หรือทำให้กระชับเพิ่มความเสถียรของ
ชั้นติดของระบบกระชับกระชาก
บรรณานุกรม

คณบดีเกษตรศาสตร์ ภาควิชากีฏศาสตร์ ภาควิชากิฏศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยเกษตรศาสตร์. 2548. ประสบการณ์การใช้กรด. กรุงเทพฯ: สัมนาพิเศษทางวิทยาศาสตร์เกษตรศาสตร์. 547 หน. ต.เดียว สถานี บุรีรัมย์ โอสถบาล และ ศิริราช ประถมภิก. 2555. แนวทางการออกแบบระบบกับกับกรดด้วยพืชพยาบาล. คณะเกษตรศาสตร์การเกษตรศาสตร์และการออกแบบสิ่งแวดล้อมทางวิทยาศาสตร์และอุตสาหกรรม. ชีวิตไทย. 41 หน.

ศุภชัย อุทิศศักดิ์พานิช. 2539. ความรู้พืชของการใช้สารเคมี. กรุงเทพฯ: มหาวิทยาลัยเกษตรศาสตร์. 327 หน.

ภูริยา ดุลย์เสียบ, ไชย วงค์สวัสดิ์ และ ศิริ วงค์สวัสดิ์. 2544. สารเคมีที่ผลิต. กรุงเทพฯ: ธรรมสาร. 465 หน.

สุนทรวิทยา. 2554. ทฤษฎีของปุ๋ยพืชพยาบาลและสารเคมีที่มีผลต่อการเจริญเติบโตและการผลิตนั้นจะเกี่ยวข้องกับแผนก. วิทยานุกรมบิณฑกฉลก. มหาวิทยาลัยแม่โจ้. 124 หน.

สุรัตน์ รัฐวุฒิ. 2549. ผลิตภัณฑ์และอาหาร. กรุงเทพฯ: ไอเดียเน็ตไทย. 200 หน.

สมพงษ์ ตั้มสิทธิ์, เจริญศรี ศิริบุตร, พรภัสส ชัยศักดิ์, ภัทรธพล เธียกฤทธิพิบัติ และ อังศุศิ เทพอธิศักดิ์. 2555. ตามมาตราและรายการต่าง. สุรัตน์: ศูนย์ความเป็นเลิศแห่งชาติ ภาษิตภัณฑ์และอาหาร. สถาบันศูนย์เครื่องคอมพิวเตอร์ เทคโนโลยีการเกษตร. 382 หน.

Saeed, T. and Sun, G. 2012. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental
parameters, operating conditions and supporting media. *Journal of Environmental Management* 112: 429-448.

ภาคผนวก ก
วิธีการเตรียมสารเคมีและวิธีวิเคราะห์
วิธีวิเคราะห์ค่าฟ要求มิเตอร์น้ำ ดินและพืช

วิธีวิเคราะห์ค่าฟรอมิเตอร์ของตัวอย่างน้ำ

1. ปริมาณไตรเจนทั้งหมด (Total Kjeldahl Nitrogen)

1.1 วิธีการเตรียมสารเคมี

1.1.1 ใส่ถั่วไตรเจนออกไซด์เชื่อมขึ้น 32% (NaOH 32%) ในการเตรียมไตรเจนออกไซด์เชื่อมขึ้น 32% จะทำการเชื่อมออกไซด์เชื่อม (NaOH commercial grade) จำนวน 320 ค., แล้วค่อยๆ ทำการละลายในน้ำกลั่นและทั่งไว้เกณฑ์ จากนั้นนำปริมาตรให้เป็น 1,000 ค.

1.1.2 มิกกั้นอินเด็กซ์ (Mixed Indicator) ในขันตอนนี้จะทำการเชื่อม เหมหิ้งเรด (Methyl Red) จำนวน 0.5 ค. ละลายด้วยแอลกอนอล (Ethanol) ปริมาตร 25 มล. และเชื่อม กรีมโบรโมครีสเซอร์เดน (Bromocresol Green) จำนวน 0.5 ค. ละลายด้วยแอลกอนอล (Ethanol) ปริมาตร 25 มล. จากนั้นนำสารละลายทั้งสองมาเทรวมกันและคงให้ข้างกัน

1.1.3 กรีมโบรโมครีสเซอร์เดน 4% (H₂BO₃, 4%) ในการเตรียมกรีมไตรเจนขึ้น 4% จะทำการเชื่อมกรีมไตรเจน (H₂BO₃) จำนวน 40 ค. ละลายในน้ำกลั่นประมาณ 500 มล. คงจนกระทั่งสารละลายหมด จากนั้นนำปริมาตรประกอบน้ำกลั่นให้เป็น 1,000 มล.

1.1.4 สารละลายกรีมไตรเจนโดยไตรเจนไตรเจน 0.05 N (HCl 0.05 N) ในการเตรียมสารละลายกรีมไตรเจนโดยไตรเจน 0.05 N จะเตรียมที่ทำการหมักกลั่นลงในน้ำกรีมไตรเจน ปริมาตรประมาณ 500 มล. จากนั้นเปิดไตรเจนโดยไตรเจน 37% (HCl 37%) จำนวน 4.14 มล. และใส่เข้าไปในเวิร์มิเตอร์แล้วปรับปริมาตรให้เต็ม 1,000 มล.

1.1.5 การหาความเข้มข้นที่นัยน้อยของสารละลายกรีมไตรเจนโดยไตรเจนไตรเจน 0.05 N (HCl 0.05 N) สำหรับการหาความเข้มข้นที่นัยน้อยของสารละลายกรีมไตรเจนโดยไตรเจนไตรเจนเริ่มจากการออกไซด์เชื่อมกรอบแอนเตอร์ (Na₂CO₃) ที่อุณหภูมิ 105°C จำนวน 4 ก. ใส่ในขวดกรีมหมุนขนาด 250 มล. เติมน้ำกลั่นในปริมาตร 20 มล. ทำการหมักอินเด็กซ์เด็กซ์จำนวน 3-5 ชั่วโมง อย่างไรก็ตามถ้าสีเข้มเรียกว่าต่ำกว่า A1 จากนั้นนำสารละลายในขวดกรีมหมุน ประมาณ 2 น้ ทะให้เกินที่อุณหภูมิห้อง ถ้าสารละลายเปลี่ยนสีติดเป็นสีเขียวให้นำสารละลายใส่ครบตามที่ดังกล่าว สารละลายกรีมไตรเจนโดยไตรเจนไตรเจน 0.05 N สารละลายเปลี่ยนเป็นสีเขียวอย่างอักษร บันทึกระบบการฟรอมิเตอร์ให้เป็น A2 (ทั้ง 3 ขั้ว) แล้วทำการค้นวัดดั้งมานำที่ 1
การคำนวณ

\[
\text{ความเข้มข้นที่แน่นอนของสารละลายตามมาตรฐาน HCl 0.05 N} = \frac{2,000 \times \text{n้ำหนักที่แน่นอนของ Na}_2\text{CO}_3}{(A1 + A2) \times \text{n้ำหนักโมลุกซ์ของ Na}_2\text{CO}_3} \tag{1}
\]

1.2 วิธีการวิเคราะห์

1.2.1 การย้อมตัวอย่างในขั้นตอนแรกจะทำการดวงด้วยตัวอย่างปริมาตร 50 มล. และใส่ตัวอย่างลงในหลอดสำหรับย้อมตัวอย่าง จากนั้นใส่เม็ด Catalyst ส้ำเร็วสูญญ์essel (Meark, Germany) ลงไป จำนวน 1 เม็ด จากนั้นเติมกรดซัฟิริกิซัฟฟ์ (H\text{SO}_4 conc.) ลงไปในปริมาตร 15 มล. ประกอบจากย้อม (BÜCHL (K-424), Switzerland) เข้ากับเครื่องสุตโตโรคิด เปิดเครื่องสุตโตโรคิด และนำไปต้มย่อยในเครื่องโดยใช้ไฟฟ้า 8 (การทำ Blank ทำเท่านั้นด้วยกับกรณีตัวอย่างโดยใช้บริสุทธิ์ด้วยปริมาตร 50 มล. แทนค่าตัวอย่าง) จากนั้นจะทำการย้อมจนได้สารละลายสีขาวใส หลังจากนั้นจะยกตัวอย่างออกมาด้วยที่รีดทีเย็น (สารละลายจะเปลี่ยนจากสีเข้มเป็นสีหัวทอง) จากนั้นจะทำการย้อมบริสุทธิ์ 50 มล. ลงไป เพื่อดูสารแลกแอมโมเนียมซัลเฟต (NH\text{H}_4\text{SO}_4) และใช้ในการกลืนต่อไป

1.2.2 การกลืนด้วยน้ำด้วยย้อมหลังจากการย้อมที่เย็นแล้วมาปะปอนด์เข้ากับเครื่องกลืน ดวงกรดอะซิเดชั่น 4% ปริมาตร 50 มล. ใส่ในภาชนะบรรจุปริมาณ 250 มล. หยดน้ำมันออกดำเนินการ 3-5 หยด (จะได้สารละลายที่มีสีเข้มขึ้น) จากนั้นจะนำไปชุดปฏิกิริยาได้รับในเครื่องกลืนหลังจากนั้นจะเติมน้ำเสียออกโดยใช้ด้วยซีัร์ซ์ 32% จากนั้นน้ำด้วยย้อมในหลอดกลืนสารเสียเป็นสีน้ำตาลหรือเขียว (ใช้คั่งกรดอะซิเดชั่นประมาณ 50 มล.) ตั้งเวลาในการกลืนประมาณ 4 นาที หรือถึงตามที่กลืนออกมาได้ปริมาณ 100 มล. หลังจากกลืนเสร็จสารละลายด้วยกรดอะซิเดชั่นจะเปลี่ยนสีจากสีชมพูเป็นสีเขียวใส หลังจากนั้นจะนำสารละลายที่ได้ไปหนองด้วยสารละลายกรดอะซิเดชั่น 0.05 N ให้หนองสารละลายเป็นสีส้มแล้วล้างด้วยน้ำกลืนที่ปริมาณกรดที่ใช้แล้วนำมาค่าผิวตัวการณ์ที่ 2

การคำนวณ

\[
\text{Total N (ม.m./ซ.ค.)} = (A-B) \times 14.007 \times N \times 1,000 \tag{2}
\]

หมายเหตุ

A คือ ปริมาตรกรดที่ใช้ในการโรคทะลวงตัวอย่าง
B คือ ปริมาตรกรดที่ใช้ในการเตรียม Blank

N คือ ความเข้มข้นของสารสารมาตรฐานกรดไฮโปคลอไรในหน่วย N

V คือ ปริมาตรน้ำที่ใส่

2. ปริมาณชื้อเคมี (Chemical Oxygen Demand) โดยวิธี Close Reflux

2.1 วิธีการเตรียมสารเคมี

2.1.1 สารละลายมาตรฐานโพแทสเซียมไนเตรต (K₂Cr₂O₇) 0.0167 M (Digestion Reagent) ในการเตรียมสารละลายมาตรฐานโพแทสเซียมไนเตรต (K₂Cr₂O₇) 0.0167 M จะทำการละลายสารโพแทสเซียมไนเตรต (K₂Cr₂O₇) ที่อุณหภูมิ 103 °C เป็นเวลา 2 ชั่วโมง และฟัก ให้เข้มข้นในถังความร้อน จนน้ำหนักน้ำปูนหายไปไม่เกิน 4.913 ค. และจึงนำไปชะล้างในน้ำกลั้นประมาณ 500 มล. จากนั้นค่อยๆเติมกรดฟลูอีดิคเข้มข้น (H₂SO₄ conc.) ปริมาตร 167 มล. และเติมเมอร์ฟิวหรือโซลุต (HgSO₄) ปริมาณ 33.3 มล. ลงไปจากนั้นจึงค่อยเติมเมอร์ฟิวหรือโซลุตเข้มข้นตามที่ใช้ ให้เข้มข้นไม่เกิน 1,000 มล.

2.1.2 กรดชีนที่ออกเจ็นส์ (H₂SO₄ Reagent) ในการเตรียมกรดชีนที่ออกเจ็นส์ จะมีจากการจิ่งวัวเจ็นส์หลัก 22 ค. แล้วนำไปชะล้างในกรดชีนที่ออกเจ็นส์ปริมาณ 2,500 มล. ตั้งหรือฟักในขวดเสี้ยวจนสะอาด

2.1.3 เฟอร์โรินอินดิเคเตอร์ (Ferroin indicator) ในการเตรียมสารฟิวเรยินอินดิเคเตอร์จะทำการชะล้าง 1,10–ฟีแนนฟิลเดนไมโปรคลอไรต์ (C₁₅H₁₀N₂H₂O₂) 1.485 ค. และไนโตรฟิวหรือโซลุต (FeSO₄·7H₂O) 0.695 ค. ในน้ำกลั้นประมาณ 50 มล. ค่อยให้ละลายจากนั้นปริมาตรด้วยน้ำกลั้นและปรับปริมาตรครบ 100 มล.

2.1.4 สารละลายกรดชีนที่ออกเจ็นส์ 10% (H₂SO₄ 10%) ในการเตรียมสารละลายกรดชีนที่ออกเจ็นส์จะทำการบีบกรดชีนที่ออกเจ็นส์ 98% (H₂SO₄ 98% conc.) 102 มล. ลง

2.1.5 สารละลายกรดสารดานฟิวเรยินอินดิเคเตอร์ขึ้น 0.10 M (FAS 0.10M) ในการเตรียมสารละลายกรดสารดานฟิวเรยินอินดิเคเตอร์ขึ้น 0.10 M จะทำการชะล้างฟิวเรยินอินดิเคเตอร์ (Fe(NH₄)₂(SO₄)₂·6H₂O) จำนวน 39.2 ค. ในน้ำกลั้นประมาณ 500 มล. เติมกรดชีนที่ออกเจ็นส์ (H₂SO₄ conc.) ปริมาตร 20 มล. ค่อยให้ละลายและทิ้งให้เย็น จากนั้นเติม
น้ำกลั่นลงไปในขวดปริมาตร 1,000 มล. (ต้องทำการเทียบหาความเข้มข้นที่แน่นอนกับสารละลายมาตรฐานโพแทลีแอตโอมีเนียม ขั้นเพศ (FAS) ในขั้นตอนนี้จะทำการโปเตนน้ำกลั่นปริมาตร 10 มล. ลงในขวดรูปปุ่มเดิมสารละลายโพแทลีแอตโอมีเนียม 6 มล. จากนั้นค่อยๆ เติมสารละลายโพแทลีแอตโอมีเนียม ปริมาตร 14 มล. ทั้งนี้ให้เบื้อง หูดโพแทลีแอตโอมีเนียมจำนวน 3 หยด จากนั้นนำมาใส่ตรงกับสารละลาย FAS โดยสารละลาย เปลี่ยนสีจากสีเหลืองเป็นสีฟ้าอมเขียวและมีจุดยุติที่สีน้ำตาลม่วง สำหรับความเข้มข้นจะคำนวณจาก สมการที่ 3

การคำนวณ

\[
\text{ความเข้มข้นที่แน่นอนของ FAS} (M) = \frac{\text{ปริมาตรสารละลาย} \times K_2Cr_2O_7 \times 0.10}{\text{ปริมาตร FAS ที่ใช้โพแทลีแอตโอมีเนียม (มิลลิลิตร)}}
\]

(3)

2.2 วิธีการวัดผล

ถ้าหลอดสีฟ้าดิล เสื่อมสีหรือถูกซึมใส่สีน้ำตาล 10% เพื่อป้องกันการปนเปื้อนจากสารอินทรีย์ จากนั้นปิดและยองน้ำมา 10 มล. (หลอด Blank ใส่น้ำกลั่นแทนด้วยอย่างน้อย) ลงใน หลอด ทำการเติมสารละลายโพแทลีแอตโอมีเนียมไป 6 มล. แล้วเติมสารละลายโพแทลีแอตโอมีเนียมไป 14 มล. (ให้ซึมของสารละลายโพแทลีแอตโอมีเนียมผ่านขั้นตอนสารละลายโพแทลีแอตโอมีเนียมด้วยการสูบ) ปั่นหลอดและให้นำแกน น้ำดื่มอยู่ที่ที่สูงกว่า 105°C เป็นเวลา 2 ชั่วโมง แล้วนำแกนออกแล้วให้นำออกมาน้ำดื่มทิ้งไว้ จนกว่าจะเข้าที่ ทำให้สารละลายมีจุดยุติอยู่ในขวดรูปปุ่ม พอที่จะหลีกออกเติมเต็ม 3 หยด จากนั้นนำไป ทำให้สารละลายมีจุดยุติอยู่ในขวด FAS ที่ทราบความเข้มข้นที่แน่นอนแล้ว โดยสารละลายจะเปลี่ยนสี จากสีเหลืองเป็นสีฟ้าอมเขียวจากนั้นจะเปลี่ยนเป็นสีน้ำตาลแดงและมีจุดยุติ บันทึกปริมาตร สารละลายสารละลาย FAS ที่ใช้ และคำนวณค่า COD จากสมการที่ 4

การคำนวณ

\[
\text{ค่าซีโอดี (COD) (มก./ล.)} = \frac{(A-B) \times M \times 8,000}{V}
\]

หมายเหตุ
3. ปริมาตรของแข็งทั้งหมด (Total Solid)

สำหรับขั้นตอนนี้เริ่มจากการนำกล้าคริสต์เปเบิดไปแปรที่อุณหภูมิ 550°C เป็นเวลา 15 นาที จากนั้นนำไปแปรที่อุณหภูมิ 105°C เป็นเวลา 1 ชั่วโมง แล้วเก็บให้อยู่ในสีละความสัน ทำการชั่งน้ำหนักของถ้วยและบันทึกลงเป็นน้ำหนัก A แล้วนำไปวางไปยังเวทมนตร์ให้ความร้อนโดยทำให้ต่ำกว่าพระร่วม 10 มล. จนน้ำหนักของน้ำหนัก จากนั้นนำกล้าคริสต์เปเบิดไปแปรที่อุณหภูมิ 105°C เป็นเวลา 1 ชั่วโมง แล้วนำไปชั่งให้อยู่ในสีละความสัน จากนั้นนำไปใช้บันทึกและบันทึกลงเป็นน้ำหนัก B และคำนวณจากสมการที่ 5

\[
\text{ของแข็งทั้งหมด (มก./ล.)} = \frac{(B - A) \times 10^6}{\text{ปริมาตรน้ำด้วยอย่าง}}
\] (5)

4. ปริมาตรของแข็งแขวนลอย (Suspended Solid)

ในขั้นตอนนี้เริ่มจากการนำกระดาษแปร GF/C ใส่ในถ้วยอุ่นน้ำเพียงเล็กน้อยนำไปแปรที่อุณหภูมิ 550°C เป็นเวลา 15 นาที จากนั้นนำไปแปรที่อุณหภูมิ 105°C เป็นเวลา 1 ชั่วโมง แล้วเก็บให้เย็นในสีละความสัน จากนั้นชั่งน้ำหนักให้กับกระดาษแปรที่อุณหภูมิ 105°C แผ่นที่เป็นน้ำหนัก A ทำการชั่งน้ำหนักกระดาษแปรที่อุณหภูมิ 105°C และทำให้ต่ำกว่าพระร่วม 50 มล. ใส่ลงในกระดาษและน้ำหนักกระดาษแปรที่อุณหภูมิ 105°C และทำให้ต่ำกว่าพระร่วม 50 มล. เก็บให้แน่ใจว่าไม่ซึมเข้าสู่กระดาษแปรที่อุณหภูมิ 105°C เป็นเวลา 1 ชั่วโมง แล้วเก็บให้เย็นในสีละความสันก่อนนำไปใช้บันทึกและบันทึกลงเป็นน้ำหนัก B และคำนวณจากสมการที่ 6

\[
\text{ของแข็งแขวนลอย (มก./ล.)} = \frac{(B - A) \times 10^6}{\text{ปริมาตรน้ำด้วยอย่าง}}
\] (6)
5. วิธีเตรียมสารวัตรใฝ่การละลาย (Nitrate; NO₃⁻) โดยวิธี Cadmium Reduction Method สำหรับการวัดค่าในสาระในตัวอย่างจะใช้เครื่อง Hach (Hach (Odyssey), U.S.A.) โดยเลือกโปรแกรม 355 N, Nitrate HR จากนั้นทำการเติมน้ำตัวอย่างปริมาตร 10 มล. ลงในขวดใส่ตัวอย่างเติมน้ำกรองรูปเติมสารสีเร็จสูงสุดที่ใช้ในเครื่อง (Hach (NitroVer 5), U.S.A.) ปั่นขวดแล้วทำให้กรองรูปน้ำกรอง เครื่องจะทำการเจาะเป็นน้ำตาล 1 นาที จากนั้นกรองผ่านกรองความต่ำเครื่องขั้นตอนแรกจะเจาะ 5 นาทีในกรณีการปฏิบัติการบัตรข้างต่างออก จากนั้นเติมน้ำกรองลงในขวดใส่ตัวอย่าง ปั่นขวดและใส่ลงในเครื่องกด Zero เพื่อทำการปรับปรุงค่าให้เป็น 0.0 มก./ล. แล้วนำขวดใส่ตัวอย่างออกและใส่ขวดตัวอย่างเข้าไปแทนแล้วกด Read แล้วทำการบันทึกค่าที่อ่านได้

6. ปริมาณแอลฟอฟฟิรีส์ (Orthophosphate; PO₄³⁻) โดยวิธี Ascorbic Acid Method สำหรับการวัดค่าฟอฟฟิรีส์ในตัวอย่างจะใช้เครื่อง Hach (Hach (Odyssey), U.S.A.) โดยเลือกโปรแกรม 490 P React. PV จากนั้นทำการเติมน้ำตัวอย่างปริมาตร 10 มล. ลงในขวดใส่ตัวอย่างเติมสารสีเร็จสูงสุดที่ใช้ในเครื่องฟอฟฟิรีส์ (Hach (PhosVer3), U.S.A.) ปั่นขวดแล้วกรองโดยกรองน้ำกรอง เครื่องจะทำการเจาะเป็นน้ำตาลในกรณีการปฏิบัติการเป็นเวลา 2 นาที นำขวดใส่ตัวอย่างออก จากนั้นเติมน้ำกรองลงในขวดใส่ตัวอย่าง ปั่นขวดและใส่ลงในเครื่องกด Zero เพื่อทำการปรับปรุงค่าให้เป็น 0.0 มก./ล. แล้วนำขวดใส่ตัวอย่างออกแล้วใส่ขวดตัวอย่างเข้าไปแทนแล้วกด Read แล้วทำการบันทึกค่าที่อ่านได้

7. ปริมาณคาร์บอนไดเอ็กซิต์

7.1 วิธีการเตรียมสารละลาย

7.1.1 ผลิตภัณฑ์กรดและเบอร์คลอริก 2:1 (HNO₃ : HClO₃) ในการเตรียมกรดผลิตภัณฑ์จะทำการละลายกรดในตัวอย่างขั้น 65% (HNO₃ 65% conc.) ปริมาตร 200 มล. ลงในบีบองคร จากนั้นทำการละลายกรดในตัวอย่างขั้น 70% (HClO₃ 70% conc.) ปริมาตร 100 มล. แล้วค่อยๆ เทกรดเบอร์คลอริกในบีบองคร แล้วให้สารละลายกรดผสมเข้ากัน เทแก้วใส่ในสองด้าน

7.1.2 น้ำรีเจนท์ (Water reagent) การเตรียมน้ำรีเจนท์นั้นจะทำการตักน้ำกลิ่นปริมาตร 500 มล. ลงในบีบองคร จากนั้นน้ำรีเจนท์ในตัวอย่างขั้น 65% (HNO₃ 65% conc.) ปริมาตร 1.5 มล. ลงในบีบองคร คุณให้สารละลายเข้ากัน จากนั้นปริมาตรด้วยน้ำกลิ่นจนครบ 1,000 มล.
7.1.3 สารละลายแคดเมียมมาตรฐาน 10 มก./ล. ในการเตรียมสารละลายแคดเมียมมาตรฐาน 10 มก./ล. จะทำาการตังน้ำรีเจนเติมปริมาตรประมาณ 50 มล. ลงในบิกเกอร์ จากนั้นปิดเปาะสารละลายแคดเมียมมาตรฐานเข้มข้น 1,000 มก./ล. ปริมาตร 1 มล. ลงในบิกเกอร์ ปรับปริมาตรด้วยน้ำรีเจนเติมควบคุมปริมาตร 100 มล.

7.1.4 สารละลายแคดเมียมมาตรฐาน 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล. ในการเตรียมสารละลายแคดเมียมมาตรฐาน 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล. จะทำาการปิดเปาะสารละลายแคดเมียมมาตรฐานเข้มข้น 10 มก./ล. ปริมาตร 0.0, 2.5, 5.0, 7.5, 10.0, 12.5 และ 15 มล. ลงในบิกเกอร์ปรับปริมาตรขนาด 50 มล. จากนั้นปรับปริมาตรด้วยน้ำรีเจนเติมควบคุมปริมาตร 50 มล. จะได้สารละลายแคดเมียมมาตรฐานเข้มข้น 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล. ตามลำดับ

7.2 วิธีวิเคราะห์

ในการเตรียมสารละลายแคดเมียมมาตรฐาน 50 มล. ลงในบิกเกอร์แล้วทำการตัดกิ่งการณ์ 10 มล. ลงไป สำหรับ Blank ให้ใช้น้ำกลืนแทนน้ำต้นตอง ทำการตัดกิ่งต้นตองอย่างไรน้ที่เป็นน้ำลาย 1 ครั้ง จากนั้นทำการตัดกิ่งที่ให้ความร้อนจนเกิดควันสีขาว แต่กระทำอย่างเข้มข้น จนเหลือปริมาณประมาณ 5 มล. ถ้าพบความสีของน้ำกลืนไม่ให้เปลี่ยนไปประมาณ 5 มล. จากนั้นจึงนำไปปรับปริมาตรด้วยน้ำรีเจนเติมควบคุมปริมาตร 50 มล. น้ำต้นตองไม่ให้เปลี่ยนผิดกับสารละลายที่ต้องที่ Atomic Absorption Spectrophotometer (AAS) (AVANTA, U.K.) แล้วนำผลการตรวจดูเอกสารของเครื่อง AAS ได้ที่เทียบกับสารละลายแคดเมียมมาตรฐานแล้วคำนวณความเข้มข้นจากผลการที่ 7 การคำนวณ

\[
\text{ความเข้มข้นของแคดเมียม (มก./ล.)} = \frac{(A-B) \times V_1}{V_2}
\]

หมายเหตุ:
A คือ ค่าความเข้มข้นของแคดเมียมของตัวอย่างจากการเตรียมปริมาตร Standart
B คือ ค่าความเข้มข้นของแคดเมียมของ Blank จากการเตรียมปริมาตร Standart
V₁ คือ ปริมาตรเครื่องมือต้นตองที่เสมือนคั่นจากปริมาตรแล้ว
V₂ คือ ปริมาตรของน้ำต้นตองที่นำมาย่อย
วิธีวิเคราะห์ค่าพารามิเตอร์ในด่างดิน

1. การหาค่าเนื้อดิน (Soil Texture)

ในการวิเคราะห์หาค่าเนื้อคิดใช้ไฮโดรมิเตอร์ (Hydrometer)ในการวิเคราะห์โดย
ถ้าจากการวัดความยาวสกัดสัมภิภูมิ 2.0 มม. เพื่อ
ทําลายการเก็บตัวของอนุภาคดิน จากนั้นน้ำอัดที่อยู่ในผักฉลามแล้วน้ำชั้นใต้ที่ฯ น้ำหนัก 50 ก.
(สําหรับเนื้อทราย) หรือ 100 ก. (สําหรับเนื้อทราย) แล้วจึงเท่าถึงดินในถ้วยใบเดิม
สารละลายแคลเซียมฟื้นขึ้น 5 แกลลอนน์ ปริมาณ 100 มล. และน้ำอัด 100 มล. ลงในถ้วยใบเดิม
จากนั้นทำการปั่นเป็นเวลา 5 นาที เนื่องจากความต้องแคลเซียมผิวที่อยู่ในถ้วยใบเดิมผัก
ขดออกต้องขอ 1,000 มล. และใช้น้ำอัดเป็นเนื้อคิดสุดท้ายและน้ำชั้นใต้ที่อยู่ในถ้วยใบเดิม
ทําการน้ำผักษาในกระบอกดูดตัวอยู่ไม่มีสารแข็งเหลือไม่ได้ดังนี้อาจ
อาการผักษาและเริ่มดูแลเนื้อทรายไม่มีความเข้มของเนื้อคิด (ต้องว่าเนื้อว่าพัน
กระเจิงผักษาสารแข็งเหลือมองเห็นท้าถึงกันจริงจุติกันไม่ได้ตามเวลา 20 วันที่ จึงค่อยๆ หย่อน
ไฮโดรมิเตอร์ลงในสารแข็ง löy (เฉพาะน้ำที่ใช้ไฮโดรมิเตอร์หยุดเมื่อคุณเสียระหว่างแล้วถ้า
พบว่ามีผักการห่อกับผักใยไฮโดรมิเตอร์ให้ทําการคัดแยกออกเสียปริมาณ 2-3 แบบ)
ทําการอ่านค่าของไฮโดรมิเตอร์จะระดับตัวของสารแข็งตาเมื่อคลิกเวลาที่ 40 วันที่ผ่านไปและวัดอุณหภูมิของการ
สารแข็งตาโดยทําการบันทึกค่าเป็น R และ T1 ทําการเมื่อได้ผลการเร่งเส้นลึกสําคัญเมื่อเวลา
อีก 20 วันที่จะครบ 2 ชั่วโมงแล้วทําการอ่านค่าที่นํ้าไฮโดรมิเตอร์เนื่องไปได้เวลา 2 ชั่วโมงฟรีดิริ่ม
ที่ทำให้การวัดอุณหภูมิ ทําการบันทึกค่าเป็น R2 และ T2 ในระหว่างที่ให้ครบเวลา 2 ชั่วโมงนี้เมื่อได้ผล
สารละลายแคลเซียมฟื้นขึ้น 5 แกลลอนน์ปริมาณ 100 มล. และน้ำอัดเป็นเนื้อคิดปริมาณ 100 มล. ลงในถ้วยใบเดิม
ทําปั่นในกระบอกดูดถ้าจากนั้นสารละลายให้เข้ากันแล้วเริ่มค่อยๆ หย่อนไฮโดรมิเตอร์ลงในสาร
แข็งตาอ่านค่าที่ได้แล้วบันทึกเป็นค่า C

ค่าความเข้มข้นของอนุภาคดินที่อ่านได้จะเป็นค่าที่ถูกต้องดังต่อไปนี้อุณหภูมิของสาร
แข็งตาที่จําเป็นวัดอุณหภูมิเท่ากับ 20°C หรือ 68°F (เฉพาะน้ําบันทึกของไฮโดรมิเตอร์) เมื่ออุณหภูมิ
ที่ว่าไม่เท่ากับอุณหภูมิที่วัดต้องทำการปรับค่าโดยเฉลี่ยหนึ่งทศนิยมที่เท่ากับค่าความเข้มข้น 0.36 ก.
ต. ทุกๆ 1°C เมื่ออุณหภูมิของสารแข็งตาต่ำกว่า 20°C

การคํานวณ

การหาค่าเปอร์เซ็นท์ของนุษยาซิลิคที่และดินเหนียว ((Site+Clay)%)
\[R = R_1 - C \]
\[R_t = R + 0.36(T_1 - 20°C) \]

\[(\text{Site} + \text{Clay})\% = R_t \times 100 / \text{n้ำหนักดินแห้ง}\]

การหาค่าเปอร์เซ็นต์ของอนุภาคดินเหลว (Clay%)
\[R = R_2 - C \]
\[R_t = R + 0.36(T_2 - 20°C) \]

\[\text{Clay}\% = R_t \times 100 \text{ /น้ำหนักดินแห้ง}\]

การหาค่าเปอร์เซ็นต์อนุภาคกลอส (Site%)
\[\text{Site}\% = (\text{Site} + \text{Clay})\% - \text{Clay}\% \]

การหาค่าเปอร์เซ็นต์อนุภาคราย (Sand%)
\[\text{Sand}\% = 100 - (\text{Site} + \text{Clay})\% \]

หมายเหตุ
C คือ ค่าความเข้มข้นของสารละลายแคลอไลท์
\(R_1 \) คือ ค่าความเข้มข้นของอนุภาคดินที่อ่านได้จากโยโตโระเมเตอร์ ณ เวลา 40 วินาที
\(R_2 \) คือ ค่าความเข้มข้นของอนุภาคดินที่อ่านได้จากโยโตโระเมเตอร์ ณ เวลา 2 ชั่วโมง
R คือ ค่าความเข้มข้นของอนุภาคดินที่หาค่าความเข้มข้นของสารละลายแคลอไลท์แล้ว
\(R_t \) คือ ค่าความเข้มข้นที่ปรับแก่แล้วจากการอ่านค่าจากโยโตโระเมเตอร์
\(T_1 \) คือ อุณหภูมิของการแขวนลอยดินที่วัดได้ ณ เวลา 40 วินาที
\(T_2 \) คือ อุณหภูมิของการแขวนลอยดินที่วัดได้ ณ เวลา 2 ชั่วโมง

2. ปริมาณความชื้นในดิน (Soil Moisture Content)

ในการวิเคราะห์ความชื้นในดินจะเริ่มจากการสัมผัสดินของกระป๋องดินที่มีเนื้อที่มันเป็นน้ำหนัก A จากนั้นยังตัดสิ่งหนึ่ง 10 ก. ใส่ในกระป๋องดินเนื้อที่มันเป็นน้ำหนัก B แล้วน้ำหนักไปถึงอุณหภูมิ 105°C เป็นเวลา 12 ชั่วโมง ทั้งนี้ให้ใช้ถังสูญญากาศความชื้น จากนั้นนำไป ขึ้นน้ำหนักเป็นน้ำหนัก C และค่าความชื้นดินดังสมการที่ 8

\[
\text{ค่าเปอร์เซ็นต์ความชื้นในดินโดยน้ำหนักดินแห้ง (％)} = \frac{(C-A-B) \times 100}{(C-A)} \quad (8)
\]
3. ปริมาณโปรตีนทั้งหมด (Total Kjeldahl Nitrogen)

3.1 วิธีการเตรียมสารเคมี

3.1.1 โซดียูเรอสีออกซิคดีเจ้มข้น 40% (NaOH 40%) ในการเตรียมโปรตีนโพลิอะคริลิคออกซิค (NaOH commercial grade) จำนวน 400 ก. แล้วต่อๆ ทำทาระลอกในน้ำเกลือน้ำละ 400 ก. แล้วทั้งตัวให้ย่อย จากนั้นปรับปริมาตรให้เป็น 1,000 มล.

3.1.2 มิกซ์อินดิเคเตอร์ (Mixed Indicator) ในขั้นตอนนี้จะทำให้สีแดง (Methyl Red) จำนวน 0.1 ก. ละลายด้วยเอทานอล (Ethanol) ปริมาตร 100 มล. เก็บไว้ในขวดที่มี จุกปิดสีน้ำตาล และชิ้นใบไม้คราส์อกซ์ (Bromocresal Green) จำนวน 0.1 ก. ละลายด้วยเอทานอล (Ethanol) ปริมาตร 100 มล. เก็บไว้ในขวดที่มี จุกปิดสีน้ำตาล

3.1.3 กรดออริกิลเข้มข้น 4% พร้อมมิคซ์อินดิเคเตอร์ (H₂SO₄, 4%) ในการเตรียมกรดออริกิลเข้มข้น 4% จะทำให้กรดออริกิล (H₂SO₄) จำนวน 40 ก. ละลายในน้ำเกลือน้ำละ 200 มล. แล้วต่อๆ ทำให้สารละลายกรดออริกิลเข้มข้น 4% จำนวน 400 ก. แล้วทั้งตัวให้ย่อย จากนั้นปรับปริมาตรให้เป็น 1,000 มล.

3.1.4 กรดอัลกอนิทสามกรดออกซิโคคลอไรติก 0.05 N (HCl 0.05 N) ในการเตรียมสารละลายสามกรดออกซิโคคลอไรติกเข้มข้น 0.05 N เริ่มต้นที่ทำให้สารละลายกรดออกซิโคคลอไรติกเข้มข้น 0.05 N จำนวน 37 N (HCl 37%) จำนวน 4.14 มล. แล้วปริมาตรปรับปริมาตรให้เป็น 1,000 มล.

3.1.5 กรดอัลกอนิทสามกรดออกซิโคคลอไรติก 0.05 N (HCl 0.05 N) สำหรับการหาความเข้มข้นที่แน่นอนของสารละลายสามกรดออกซิโคคลอไรติกจะเริ่มจากการเขย่าสีแห้งสารเกลือของกรดออกซิโคคลอไรติก 0.05 N (Na₂CO₃) ที่อุณหภูมิ 105°C จำนวน 0.1 ถึง 0.2 ก. แล้วน้ำมันที่ชั้นบนประมาณ 0.13 ถึง 0.25 มล. แล้วน้ำมันที่ชั้นบน กลับไปปริมาตร 20 มล. ทำการทยอยนิทซ์อินดิเคเตอร์จำนวน 3-5 หยด (couleur de sels de léger) นำม้า
ภาคเสกตัวยาสารละลายสารประกอบไฮโดรคาร์บอนในน้ำ 0.05 N จนสารละลายเปลี่ยนสีจากสีเขียวเป็นสีชมพูออก บันทึกปริมาตรการที่ใช้เป็น A1 จากนั้นนำสารละลายในขวดรูปทรง ประมาณ 2 น้ำทิ้งไว้ในที่คุณติดต่างกัน ถ้าสารละลายเปลี่ยนสีกลับเป็นสีเขียวให้นำสารละลายไปฝังต่อ ด้วยสารละลายสารประกอบไฮโดรคาร์บอนในน้ำ 0.05 N จนสารละลายเปลี่ยนสีจากสีชมพูออกอีกครั้ง

บันทึกปริมาตรการที่ใช้เป็น A2 (ทำ 3 ครั้ง) แล้วทำการคำนวณดังสมการที่ 1

3.2 วิธีการวิเคราะห์

3.2.1 การ吖จั่วตัวอย่าง ในขั้นตอนแรกจะทำการขั้นตัวอย่างที่ร่วมมันละตัว

จาก elutrient 0.5 มม. จานบน 1 ก. ลงในหลอดอย่างตัวอย่าง จากนั้นใส่เม็ด Catalyst สำหรับรูป (Meark, Germany) ลงไป จำนวน 1 เม็ด จากนั้นเติมกรดซัฟริกซ์เซิร์กซ์ (H2SO4 conc.) ลงในปริมาตร 10 มล. ประกอบด้วยกล่อง (BUCHI (K-424), Switzerland) เข้ากับเครื่องสุญญากาศ ปิดเครื่องสุญญากาศและนับไว้ตั้งอย่างในเวลาไม่นานกว่า 5 นาที (การทำ Blank จะทำเช่นเดียวกับการตัวอย่างโดยใช้
เพียงกรดซัฟริกซ์) จากนั้นจะทำการอย่างไม่สารละลายสีเขียวในหลังจากนั้นจะเกิดตัวอย่างออกมาดังนี้ให้เกิด (สารละลายจะเปลี่ยนจากการสีเขียวเป็นสีฟ้าอ่อน) จากนั้นจะทำการเติมน้ำกลับปริมาตร 50 มล. ลงไป เพื่อละลายผลิตภัณฑ์เช่นซัฟริกซ์ ((NH4)2SO4) และใช้ในการกลับต่อไป

3.2.2 การกลับตัวอย่าง นำตัวอย่างหลังจากนั้นการอย่างที่เกิดแล้วภายนอกเข้า กับเครื่องกลับ ตรงกับกรดซัฟริกซ์ 4% ปริมาตร 15 มล. ใส่ลงไปในขวดรูปทรงขนาด 125 มล. จากนั้นนำขวดรูปทรงไปใส่ไว้ในเครื่องกลับ หลังจากนั้นจะเกิดตัวอย่างเปิดกรดซัฟริกซ์ 40% ประมาณ 20 มล. (จนกระทั่งสีเขียวในหลอดกลับเป็นสีเขียวอ่อนมาก) ตัวอย่างในการกลับประมาณ 2 นาที หรือจนกระทั่งสารที่กลับออกมาเป็นกรดซัฟริกซ์มีรูปทรง 50 มล. หลังจากกลับเสร็จสารละลายกรดกรดซัฟริกซ์เปลี่ยนสีจากสีชมพูเป็นสีเขียว หลังจากนั้นจะนำสารละลายที่ใส่ในหลังหัวต่ำนั้นสารละลายกรดกรดซัฟริกซ์ 0.05 N ไตรบริมสารละลายเปลี่ยนสีกลับไปเป็นสีชมพูอ่อน บันทึกปริมาตรการที่ใช้แล้วนำมาคำนวณดังสมการที่ 9

การคำนวณ

\[
\text{Total N (mg/L)} = \frac{(A-B) \times 0.014 \times N \times 100}{W}
\]

หมายเหตุ

A คือ ปริมาตรการที่ใส่ในการฝังตัวอย่าง

B คือ ปริมาตรการที่ใช้ในการฝัง Blank

N คือ ความเข้มข้นของสารประกอบไฮโดรคาร์บอนในน้ำ N
W คือ น้ำหนักของดินตัวอย่าง

4. ปริมาณไนเตรโทโนทิน (Nitrate; NO₃⁻)

4.1 วิธีการเตรียมสารตัวอย่าง

4.1.1 โพแทสเซียมคลอไรต์เข้มข้น 2 N (KCl 2 N) การเตรียมสารโพแทสเซียมคลอไรต์เข้มข้น 2 N จะทำการชั่วโมงเช้าใช้คลอไรต์น้ำมัน 149.12 ก. ลงในปั๊มน้ำ จนแต่เดิมกว่า กลับลงไปประมาณ 500 มล. สนองโพแทสเซียมคลอไรต์ละลายจนหมด ทำการปั่นภูมิคุณตัวอย่างน้ำ กลับจนครบปริมาณ 1,000 มล.

4.1.2 มิกซ์ตะไคร้เตอร์ (Mixed Indicator) การเตรียมมิกซ์ตะไคร้เตอร์จะทำการ ชั่วโมงทิลด์ (Methyl Red) จำนวน 0.5 ก. และละลายเอทานอล (Ethanol) 2.5 มล. และชั่วโมงไนเตรโทโนทิน (Bromocresyl Green) จำนวน 0.5 ก. และละลายเอทานอล (Ethanol) 25 มล.

4.1.3 การเตรียม钋ทินชั่วโมง (H₃BO₃ 2%) การเตรียม钋ทินชั่วโมงขั้น 2% จะทำการ ชั่วโมง钋ทิน (H₃BO₃) จำนวน 20 ก. แล้วนำไปชะล้างในน้ำกลั่นประมาณ 500 มล. avn น้ำกลั่น สารละลายเหล่านี้น้ำมันปริมาณตัวอย่างน้ำกลั่นให้เป็น 1,000 มล.

4.1.4 การเตรียมมิกซ์ตะไคร้เตอร์โดยคลอไรต์ 0.05 N (HCl 0.05 N) การเตรียม สารละลายมิกซ์ตะไคร้เตอร์โดยคลอไรต์ 0.05 N จะเตรียมจากน้ำกลั่นในขวดปั่นปริมาณ 500 มล. จากนั้นไปปั่นโดยคลอไรต์เข้มข้น 37% (HCl 37%) ปริมาณ 4.14 มล. ลงใน ขวดปั่นปริมาณแล้วปั่นภูมิคุณตัวอย่างน้ำกลั่นจนครบปริมาณ 1,000 มล.

4.1.5 การเตรียมฟิลลิมิค (Sulphamic acid; NH₂SO₃H) การเตรียมฟิลลิมิคจะทำการ ชั่วโมงฟิลลิมิค 1 ก. ลงในปั่มน้ำ แล้วนำไปชะล้างในน้ำกลั่นประมาณ 50 มล. จากนั้นปั่น ปริมาณตัวอย่างน้ำกลั่นครบ 100 มล. นำไปเก็บไว้ในตู้เย็น

4.2 วิธีการเตรียมสารตัวอย่าง

ในขั้นตอนการเตรียมสารตัวอย่างจะทำการน้ำตัวอย่างใส่ในชั่วโมงน้ำวันบริมาณ 10 ก. ใส่ลงในขวดสามารถวันบริมาณ 250 มล. จากนั้นดิสมีสารละลายโพแทสเซียมคลอไรต์เข้มข้น 2 N ปริมาณ 100 มลิตร์ ปั่นแล้วทำการปั่นคุมประมาณ 10 นาที จากนั้นนำสารกลั่นที่ได้มาทอดโดย ใช้กระดาษกรอง What man No.1 จากนั้นนำสารกลั่นที่ได้ก็เปลี่ยนมาลงในขวดฟิลลิมิค ใบน้ำแล้วและ แยกในเนียร์กับไนเตรทในไนเตรท
4.2.1 ปริมาณแอมโมเนียม ในโคลนเจน (Ammonium–N)

ในชั้นตอนการหาแอมโมเนียมในโคลนเจนจะเริ่มจากการบีบสารสกัดตัวอย่างปริมาตร 10 มล. ลงในหลอดกลมตัวอย่าง จากนั้นเติมเกลือโมเลกุลย่อยออกไซด์ (MgO) 0.2 มก. ลงในหลอดกลม ทำการระเหยหลอดกลมเข้ากับเครื่องกลั่น แล้วจึงวางกรดอิระติเข้มข้น 2% ปริมาตร 15 มล. ลงในขวดรูปท่ำขนาด 125 มล. และเตรียมเกลืออินเดียจ้าน 3 หยด แล้วนำไปประกอบเข้ากับเครื่องกลั่น เริ่มกรดกลั่นจนสารละลายในขวดรูปท่ำมีปริมาตรลิตรละ 50 มล. ถ้าสารละลายในขวดรูปท่ำเปลี่ยนจากสีชมพูเป็นสีเขียวให้นำไปเทหลังกรดสารละลายกรดอะซิ海尔กิซ์ข้น 0.05 N จนสารละลายเปลี่ยนกลับมาเป็นสีชมพู ส่วนหลอด Blank ใช้สารโพแทสเซียมคลอรีนเข้มข้น 2 N แทนตัวอย่าง

4.2.2 ปริมาณนิทรานิสและไนเตรต ในโคลนเจน (Ammonium+Nitrate–N)

ในชั้นตอนการหาแอมโมเนียมและไนเตรตในโคลนเจนจะเริ่มจากการบีบสารสกัดตัวอย่างปริมาตร 10 มล. ลงในหลอดกลมตัวอย่าง จากนั้นบีบกรดซักรัตน์ฟอร์มิค (NH₄HSO₄) ปริมาตร 1 มล. ทำการเขย่าเป็นเวลา 3 วินาที แล้วจึงเติมเกลือโมเลกุลย่อยออกไซด์ (MgO) จำนวน 0.2 มก. และสาร์ทรายของตัวอย่าง (Devae alloy) จำนวน 0.2 มก. ลงในหลอดกลม ทำการระเหยหลอดกลมเข้ากับเครื่องกลั่น แล้วจึงวางกรดอิระติเข้มข้น 2% ปริมาตร 15 มล. ลงในขวดรูปท่ำขนาด 125 มล. และเตรียมเกลืออินเดียจ้าน 3 หยด นำไปประกอบเข้ากับเครื่องกลั่น เริ่มกรดกลั่นจนสารละลายในขวดรูปท่ำมีปริมาตรลิตรละ 50 มล. ถ้าสารละลายในขวดรูปท่ำเปลี่ยนจากสีชมพูเป็นสีเขียวให้นำไปเทหลังกรดสารละลายกรดอะซิเซลกิซ์ข้น 0.05 N จนสารละลายเปลี่ยนกลับมาเป็นสีชมพู ส่วนหลอด Blank ใช้สารโพแทสเซียมคลอรีนเข้มข้น 2 N แทนตัวอย่าง และทำการคำนวณตามสมการที่ 10, 11 และ 12

การคำนวณ

\[
\text{แอมโมเนียม ในโคลนเจน (มก./กг.)} = \frac{(A-B) \times 0.014 \times N \times V_1 \times 10^6}{V_2 \times W} \quad (10)
\]

\[
\text{แอมโมเนียมในไนเตรต ในโคลนเจน (มก./ก้.)} = \frac{(A-B) \times 0.014 \times N \times V_1 \times 10^6}{V_2 \times W} \quad (11)
\]

\[
\text{แอมโมเนียมในไนเตรต ในโคลนเจน (มก./ก้.)} = \frac{(A-B) \times 0.014 \times N \times V_1 \times 10^6}{V_2 \times W} \quad (11)
\]
ในตาราง ไตร公社 (มก./กก.) = (b) - (a) \[(12)\]

หมายเหตุ

A คือ ปริมาตรการบรรจุสารในแกลนเองตรงกัน
B คือ ปริมาตรการบรรจุสารที่ใช้ในการแทรก Blank
N คือ ความเข้มข้นที่แน่นอนของการบรรจุสารที่ใช้ในการแทรก

\(V_1 \) คือ ปริมาตรที่มีของสารจากไทเทนไฮเดรโดคลอไรที่ใช้ในการเตรียม

\(V_2 \) คือ ปริมาตรของสารคลอไตรที่นำมาทำการล้าง

W คือ น้ำหนักดินที่นำมาล้าง

(a) คือ ปริมาณไตร公社จากการวัดค่าความเข้มสีในเบื้องในไตร公社

(b) คือ ปริมาณไตร公社จากการวัดค่าความเข้มสีกับไตร公社ในไตร公社

5. ความเป็นกรดด่างของดิน (pH)

ในนี้ตนเองของการวัดค่าความเป็นกรดด่างของดินจะทำการซักดินเกลื่อนหนัก 20 แกลน
ในบักกรด ทำการเติมน้ำกลั่นลงในบักกรด 20 มล. แล้วสนิมสารละลาย 3 ครั้งท่ากับกรดละลาย 5 น้ำที่
จากนั้นเทิ่งไป 30 น้ำที่ให้สารละลายตกตะกอน จึงทำการจุ่มเครื่องวัดค่าความเป็นกรดด่าง บันทึกค่าที่
พบได้

6. ปริมาณอินทรีย์ตีนดิน (Organic Matter)

6.1 วิธีการเตรียมสารละลาย

6.1.1 สารละลายสารละลายไทเทนไฮเดรโตโครเมทขั้น 1 N (K_2CrO_7 1 N) ใน
การเตรียมสารละลายคาร์บอยไทเทนไฮเดรโตโครเมทขั้น 1 N จะทำการนำไทเทนไฮเดรโตโคร-
เมทไปอบที่อุณหภูมิ 105\(^\circ\)C เป็นเวลา 2 ชั่วโมง จากนั้นท๊อสให้เย็นในโอโดรความชื้น แล้วนำ
ไทเทนไฮเดรโตโครเมทไปชิ้นจ๊าดจำนวน 49.04 ก. จากนั้นนำไปละลายในน้ำกลั่นประมาณ 500 มล. และ
นำไปปรับปริมาณด้วยน้ำกลั่นจนครบ 1,000 มล.

6.1.2 เพลิงอีมิทิเดเตอร์ (Ferroin indicator) ในการเตรียมเพลิงอีมิทิเดเตอร์
จะทำการละลาย 1.10–กิโลโมลละลิฟเตอร์ (C_{12}H_{8}N_{2}H_{2}O) จำนวน 1.485 ก. และโอม
(II) ซัลเฟทยลไซด์ (FeSO₄·7H₂O) จำนวน 0.695 ก. ในน้ำสั้นประมาณ 50 มล. แล้วคืนให้ละลายจากนั้นปรับปริมาตรด้วยน้ำสั้นจนมีปริมาตรครบ 100 มล.

6.1.3 สารละลายมาตรฐานพร้อมชีวิตเพิ่มขึ้น 1.0 N (FeSO₄·7H₂O 1.0 N) ในการเตรียมสารละลายมาตรฐานพร้อมชีวิตเพิ่มขึ้น 1.0 N จะทำสารละลายพร้อมชีวิตเพิ่มขึ้น (FeSO₄·7H₂O) จำนวน 278 ก. ในน้ำสั้นประมาณ 800 มล. แล้วทำการเตรียมกรดซัลเฟทยลไซด์ (H₂SO₄ conc.) ปริมาตร 15 มล. เพื่อป้องกันไม่ให้ Fe²⁺ ถูกออกไซต์เป็น Fe³⁺. ทำการคืนให้ละลายและแทรกให้ยั่ง. จากนั้นเติมน้ำสั้นลงไปจนครบปริมาตร 1,000 มล. (ต้องทำการเตรียมสารละลายเพิ่มขึ้นที่แน่นอนกับสารละลายมาตรฐานไฟว์ซีซันเพื่อไม่ถูกสูญ)

6.1.4 การหาความเข้มข้นที่แน่นอนของสารละลายมาตรฐานพร้อมชีวิตเพิ่มขึ้น (FeSO₄) ในขั้นตอนการหาความเข้มข้นที่แน่นอนของสารละลายมาตรฐานพร้อมชีวิตเพิ่มขึ้นนี้จะทำการเตรียมสารละลายเพิ่มขึ้น (H₂SO₄ conc.) ปริมาตร 10 มล. ลงไปแล้วราวด้วยทำการเปลี่ยนน้ำสั้นปริมาตร 20 มล. ตั้งแต่ที่ไปให้ยั่งแล้วจึงทยอยเพิ่มชีวิตเพิ่มขึ้น (K₂Cr₂O₇) จำนวน 3 หยด จากนั้นนำไปทำให้สารละลายเกิดสีฟ้าอมเขียวและเปลี่ยนเป็นสีน้ำตาลแดง นั่นคือถึงจุดวัด. การทำวัดนี้ก็เป็นปริมาตรสารละลายพร้อมชีวิตเพิ่มขึ้นที่ใช้ทดสอบและคำนวณความเข้มข้นตามสมการที่ 13.

การคำนวณ

\[
\text{ความเข้มข้นที่แน่นอนของพร้อมชีวิตเพิ่มขึ้น (N)} = \frac{\text{ปริมาตร} K_2Cr_2O_7 \times \text{ความเข้มข้นของ} K_2Cr_2O_7}{\text{ปริมาตรพร้อมชีวิตเพิ่มขึ้นที่ใช้ทดสอบ}}
\]

(13)

6.2 วิธีการวิเคราะห์

ในขั้นตอนวิธีการวิเคราะห์ปริมาณอินทิลซีว่อนในตัวนั้นเริ่มจากน้ำสั้นด้วยที่ส่วนการ ที่นี้ให้เหลวแล้วราวกับการวัดน้ำสั้นประมาณ 0.5 มл. จากนั้นน้ำสั้นไปจั่ง 1.0xxx ก. ลงไปในเครื่องปริ้น หมายถึงแล้วทำการเปลี่ยนสารละลายเพิ่มขึ้น (FeSO₄·7H₂O) ปริมาตร 1 N ปริมาตร 5 มล. และการเตรียมชีวิต เพิ่มขึ้น (H₂SO₄ conc.) ปริมาตร 20 มล. ลงไปในเครื่องปริ้นจากนั้นปิดฝากรับปริมาณ 20 มล. ลงไปทำการทดสอบเพิ่มชีวิตเพิ่มขึ้นจำนวน 3 หยด แล้วนำไปทำให้สารละลายมาตรฐานพร้อมชีวิตเพิ่มขึ้นจะเปลี่ยนสีจากสีฟ้าอมเขียวและเปลี่ยนเป็นสีน้ำตาลแดง นำมาใช้ทำการวัดปริมาตรสารละลายพร้อมชีวิตเพิ่มขึ้นที่ใช้ทดสอบและคำนวณความเข้มข้นตั้งสมการที่ 14.
การคำนวณ

\[
\text{ปริมาณอัปที่ริ้วซุ่ม (\%) = } \frac{(\text{ปริมาณ} \text{K}_2\text{Cr}_2\text{O}_7 \times \text{ความเข้มข้น} \text{K}_2\text{Cr}_2\text{O}_7) - (\text{ปริมาณ} \text{FeSO}_4 \times \text{ความเข้มข้น} \text{FeSO}_4) \times 0.672}{\text{น้ำหนักก้อนตัวอย่าง}}
\]

(14)

7. ความสามารถในการแลกเปลี่ยนประจุบวก (Cation Exchange Capacity; C.E.C.)

7.1 วิธีการเตรียมสารเคมี

7.1.1 สารละลายแอมโมเนียเมื่อฉีดต่ำที่เข้มข้น 1 N, pH 7 (Ammonium acetate solution 1 N, pH 7) ในการเตรียมสารละลายแอมโมเนียมจีเซอร์ฟีเข้มข้น 1 N, pH 7 จะทำให้สารละลายแอมโมเนียมจีเซอร์ฟี (CH₃COONH₄) จำนวน 154.16 g. ลงในน้ำกลั่นประมาณ 800 ml. และปรับค่า pH ของสารละลายให้ได้ 7 โดยใช้ CH₃COOH หรือ NH₄OH และปรับปริมาณด้วยน้ำกลั่นจนครบ 1,000 ml.

7.1.2 สารละลายกรดคลอรีนเดือดเกลือเกลือเข้มข้น 10% (Acidified sodium chloride solution, NaCl 10%)

7.1.2.1 สารละลายกรดchlorideในเข้มข้น 0.01% (HCl 0.01%) ในชั้นตอนการเตรียมสารละลายกรดchlorideในเข้มข้น 0.01% จะทำให้ปริมาณกรดchlorideในชั้น 37% (HCl 37% conc.) ปริมาตร 0.14 ml. ลงในน้ำกลั่นประมาณ 400 ml. จากนั้นปรับปริมาณด้วยน้ำกลั่นให้ครบ 500 ml.

7.1.2.2 สารละลายกรดchlorideในเข้มข้น 10% ในชั้นตอนการเตรียมสารละลายกรดchlorideในเข้มข้น 10% จะทำให้ปริมาณกรดchloride (NaCl) จำนวน 100 g. ลงในสารละลายกรดchlorideในเข้มข้น 0.01% ปริมาตร 500 ml. จากนั้นปรับปริมาณด้วยน้ำกลั่นจนครบ 1,000 ml.

7.1.3 สารละลายโซเดียมโซเดียมเกลือเกลือเข้มข้น 40% (NaOH 40%) ในการเตรียมสารละลายโซเดียมโซเดียมเกลือเกลือเข้มข้น 40% ทำการขั้นสารละลายโซเดียมโซเดียมเกลือ (NaOH commercial grade) จำนวน 400 g. ลงในน้ำกลั่นขนาด 1,000 ml. และทำการเติมน้ำกลั่นปริมาณ 900 ml. จากนั้นลงสารละลายโซเดียมโซเดียมเกลือลงลงจนละลายหมดและทิ้งให้ทิ้ง แล้วจึงปรับปริมาณด้วยน้ำกลั่นจนครบ 1,000 ml.
7.1.4 มิสซิฟิเดสตรี่ (Mixed Indicator) ในการเตรียมมิสซิฟิเดสตรี่จะทำ
การข้ามโพแทลเรด (Methyl Red) จำนวน 0.5 ภ. ละลายด้วยเอทานอล (Ethanol) ปริมาตร 25 มล.
และข้ามโพรกัลเรด (Bromocresal Green) จำนวน 0.5 ภ. ละลายด้วยเอทานอล (Ethanol)
ปริมาตร 25 มล. จากนั้นนำสารละลายทั้งสองมาเทรวมกันและคนให้เข้ากัน

7.1.5 การทดลองขั้นหลัก 2% (H₂BO₃) ในสารละลายกรดออกซิเดสตรี่ 2% จะ
ทำให้กรดออกซิเดสตรี่ (H₂BO₃) จำนวน 20 ภ. แล้วนำไปละลายในน้ำกลั่นประมาณ 500 มล. จากนั้น
คนจนสารละลายหมดแล้วนำมาปรับปริมาตรด้วยน้ำกลั่นให้เป็น 1,000 มล.

7.1.6 สารละลายกรดออกซิเดสตรี่ 0.05 N (HCl 0.05 N) ในกรดกรดออกซิเดสตรี่
สารละลายกรดออกซิเดสตรี่ 0.05 N จะเป็นกรดกรดออกซิเดสตรี่ในน้ำกลั่นประมาณ 500
มล. จากนั้นปัสตริตกรดออกซิเดสตรี่เข้มข้น 37% (HCl 37%) จำนวน 4.14 มล. ลงในปัสตริตแล้ว
นำไปปรับปริมาตรในขวดปรับปริมาตรด้วยน้ำกลั่นจนครบ 1,000 มล.

7.2 วิธีการวิเคราะห์

7.2.1 วิธีการทำสัดิ ในการตัดออกของสารกัตหนังนักติดจุ่มในน้ำกรดออกซิเดสตรี่
ผ่านแคปซูลขนาด 2 มม. จากนั้นนำนักติดจุ่มไปในกรดกรดออกซิเดสตรี่เข้มข้น 5 N ภ.
ลงในหลอดในหนึ่งชั่วโมง ขณะที่กรดกรดออกซิเดสตรี่ในน้ำกลั่นประมาณ 25 มล. แล้ว
นำไปข้ามโพแทลเรด 30 นาที จากนั้นนำไปในน้ำกรดออกซิเดสตรี่ที่ความเร็ว 4,000 รอบต่อนาที เป็นเวลา 5 นาที.
ทำให้สารละลายออกซิเดสตรี่ที่กรดกรดออกซิเดสตรี่ให้ถูกกรดกรดออกซิเดสตรี่.
ทากนำนักติดออกซิเดสตรี่ 2 ครั้ง จากนั้นนำนักติดออกซิเดสตรี่เข้มข้น 95% ปริมาตร 25 มล.
ลงในหลอดในน้ำกรดกรดออกซิเดสตรี่ที่ความเร็ว 4,000 รอบต่อนาที เป็นเวลา 5 นาที เพื่อให้สารละลายออกซิเดสตรี่
ทากนักติดออกซิเดสตรี่ 2 ครั้ง จากนั้นนำไปในน้ำกรดกรดออกซิเดสตรี่เข้มข้น 10% (NaCl 10%)
ปริมาตร 25 มล. นำไปข้ามโพแทลเรด 30 นาที แล้วนำไปในน้ำกรดกรดออกซิเดสตรี่เข้มข้น 4,000
รอบต่อนาที เป็นเวลา 5 นาที ทำให้สารละลายออกซิเดสตรี่ให้ถูกกรดกรดออกซิเดสตรี่เข้มข้น 10% (NaCl 10%)
ปริมาตร 100 มล.

7.2.2 วิธีการทำสัดิ ในการตัดออกของสัดิจะทำให้ปริมาตรด้วยน้ำกรดกรดออกซิเดสตรี่
20 มิลลิลิตรลงในหลอดถังตัวอย่างแล้วจัดเต็มสารละลายออกซิเดสตรี่โดยกรดกรดออกซิเดสตรี่เข้มข้น 40% ปริมาตร
15 มิลลิลิตรลงในหลอดถัง จากนั้นประกอบหลอดถังข้ามกับเครื่องกลั่น แล้วจ้างทำตัวการตัดออกซิเด
กรดออกซิเดสตรี่ 2% ปริมาตร 15 มิลลิลิตรในน้ำกรดกรดออกซิเดสตรี่เข้มข้น 125 มิลลิลิตรและทดสอบกรดกรดออกซิเดสตรี่
จำนวน 3 หลอดแล้วนำไปประกอบเข้ากับเครื่องกลั่น เริ่มการทำสัดิจนสารละลายในขวดประยุกต์มี
ปริมาตรถึงชี้วัด 50 มิลลิลิตร โดยฉังสารละลายในขวดรูปซิลิโคนจากสิ่มผูเป็นสีเขียวให้ปักน้ำของออกไซด์ออกซิเดียม 0.05 N จนสารละลายปีกสีเขียวแล้วเอาเป็นสีเขียวท่า
ภาระนิยม particular ที่ใช้ immediate ได้ยืด Black ใช้สารละลาย high ได้ยืดออกไคท์เข้มข้น 10% (NaCl 10%) แทนตัวอย่าง และทำกระบวนการความเข้มข้นตามสมการที่ 15

garner C.E.C. (ต่อสูตรย์/ 100 ก. ดิน) = \frac{(A-B) \times N \times V_1 \times 100}{V_2 \times W}

หมายเหตุ

A คือ ปริมาตรตารางกระดาษโดยตรงที่ใช้ในการทดสอบด้วยอย่าง
B คือ ปริมาตรตารางกระดาษโดยตรงที่ใช้ในการทดสอบ Blank
N คือ ความเข้มข้นเพิ่มเติมของกระดาษโดยตรงออกซิเดียม
V_1 คือ ปริมาตรสูตรท้ายของสารสกัดกระดาษโดยตรงออกไคท์เข้มข้น 10%
V_2 คือ ปริมาตรของสารสกัดกระดาษโดยตรงออกไคท์เข้มข้น 10% ที่น้ำมันกลับ
W คือ น้ำหนักของดินตัวอย่างที่นำมาทดสอบ

8. ปริมาณผลพรูโรธีนิย์ดิน (Available Phosphorous)

8.1 วิธีการเตรียมสารเคมี

8.1.1 สารสกัด Braby II (NH_4F 0.03 M in HCl 0.1 M)

8.1.1.1 แอมโมเนียมฟูออโรไรท์เข้มข้น 1 M (NH_4F 1 M) ในขั้นตอนการ
เตรียมสารละลายแอมโมเนียมฟูออโรไรท์เข้มข้น 1 M จะทำการละลายแอมโมเนียมฟูออโรไรท์ (NH_4F)
จำนวน 37.9 g. ลงในน้ำเล็กประมาณ 500 มล. จากนั้นปรับปริมาตรด้วยน้ำกลืนจนครบ 1,000 มล.
เก็บไว้ในขวด_AMOUNT ที่น้ำ

8.1.1.2 การไลโคโครอลิคเข้มข้น 0.5 M (HCl 0.5 M) ในขั้นตอนการ
ไลโคโครอลิคเข้มข้น 0.5 M จะทำการละครั้งโดยออกซิเดียม 37% (HCl 37% conc.) ปริมาตร 20.9 ml. ลงในน้ำกลืนประมาณ 300 ml. จากนั้นปรับปริมาตรด้วยน้ำกลืนจนครบปริมาตร 500 ml.

8.1.1.3 สารสกัด Braby II การเตรียมสารสกัด Braby II จะทำให้ละลาย
แอมโมเนียมฟูออโรไรท์เข้มข้น 1 M ปริมาตร 30 ml. และการไลโคโครอลิคเข้มข้น 0.5 M ปริมาณ 200 ml.
ปรับปริมาตรด้วยน้ำกลืนจนครบ 1,000 ml. โดยให้สารละลายมีค่า pH 1.5±0.1

8.1.2 ปิวคัลล์แลอร์วิไลเทนซ์ (Mix colour reagent)
8.1.2.1 สารละลายโมเลกุลแอนติโมมีทำหัวแรกขึ้น 0.5% (K₂Sb₂O₇·CaH₆·3H₂O 0.5%) ในการเตรียมสารละลายโมเลกุลแอนติโมมีทำหัวแรกขึ้น 0.5% จะทำการขดสารละลายโมเลกุลแอนติโมมีทำหัวแรก (K₂Sb₂O₇·CaH₆·3H₂O) จำนวน 0.5 กรัมในน้ำกลั่นประมาณ 50 มล. จากนั้นเตรียมสารละลายปรับปริมาตรด้วยน้ำกลั่นจนครบ 100 มล.

8.1.2.2 สารละลายโมเลกุลแอนติโมมีไลบท (Ammonium molybdate stock solution) ในการเตรียมสารละลายโมเลกุลแอนติโมมีไลบทจะทำการละลายโมเลกุลแอนติโมมีไลบท ((NH₄)₆MoO₄·4H₂O) จำนวน 20 กรัมอย่างเข้า ๆ ในน้ำกลั่นประมาณ 700 มล. แล้วทำการเติมสารละลายโมเลกุลแอนติโมมีไลบทเข้ามา 4 มิลิลิตร (H₂SO₄ conc.) ทั้งนี้ให้เซ็ตฉีดน้ำหนักสารละลายโมเลกุลแอนติโมมีไลบทขึ้น 0.5% (K₂Sb₂O₇·CaH₆·3H₂O) ปริมาตร 100 มล. แล้วปรับปริมาตรด้วยน้ำกลั่นจนครบ 1,000 มล. (เก็บไว้ในคนประมาณ 1 เดือน)

8.1.2.3 มิกซ์คล้ายคลึงเรืองแสง (Mix colour reagent) การเตรียมมิกซ์คล้ายคลึงเรืองแสงนี้ทำการละลายสารละลายโมเลกุลแอนติโมมีไลบทปริมาตร 100 มล. (สารละลายนี้ต้องทำการเตรียมไว้ทุกวัน)

8.1.3 กรดทริกไซเล็กซั่น 1% (H₃BO₃ 1%) ในการเตรียมกรดทริกไซเล็กซั่น 1% จะทำการขดกรดทริกไซเล็กซั่น (H₃BO₃) จำนวน 10 กรัมในน้ำกลั่นประมาณ 500 มล. ขณะกรดจะสารละลายหมด จากนั้นปรับปริมาตรด้วยน้ำกลั่นให้เป็น 1,000 มล.

8.1.4 สารมาตรฐานฟลูออริซั่นซั่น 100 มก./ล. (Standard P solution 100 ppm) ในการเตรียมสารมาตรฐานฟลูออริซั่นซั่น 100 มก./ล. จะทำการละลายสารฟลูออริซั่นซั่นในน้ำกลั่นที่อุณหภูมิ 105°C เป็นเวลา 2 ชั่วโมงแล้วให้เย็นในถังคุณภาพ จากนั้นน้ำปั๊มขึ้นหนัก 0.4390 ก. แล้วน้ำปั๊มในน้ำกลั่นประมาณ 500 มล. เรียกว่าสารฟลูออริซั่นซั่น (H₂SO₄ conc.) ปริมาตร 25 มล. ทำการปรับปริมาตรด้วยน้ำกลั่นจนครบ 1,000 มล.

8.1.5 สารมาตรฐานฟลูออริซั่นซั่น 5 มก./ล. (Standard P solution 5 ppm) ในการเตรียมสารมาตรฐานฟลูออริซั่นซั่น 5 มก./ล. จะทำการเปลี่ยนสารมาตรฐานฟลูออริซั่น 100 มก./ล. มาปริมาตร 5 มล. ค่อยๆปรับปริมาตรจนครบ 100 มล. แล้วปรับปริมาตรด้วยน้ำกลั่นจนครบ 1,000 มล.

8.1.6 สารมาตรฐานฟลูออริซั่นซั่น 0.0, 0.2, 0.4, 0.6, 0.8 และ 1 มก./ล. ในการเตรียมสารมาตรฐานฟลูออริซั่นซั่น 0.0, 0.2, 0.4, 0.6, 0.8 และ 1 มก./ล. จะทำการเปลี่ยนสารมาตรฐานฟลูออริซั่นซั่น 5 มก./ล. มาปริมาตร 0, 1, 2, 3, 4 และ 5 มล. ลงในชุดปรับปร
9. ปริมาณแคคติมีเนียมในดิน
9.1 วิธีการเตรียมสารเคมี

9.1.1 กรดผสมในตริกและเบอร์คลอไรกี 2:1 (HNO₃ : HClO₄) ในการเตรียมสารเคมี
ผสมนั้นจะทำการต้มกรดในตริกซึ่งมีความเป็นกรด 65% (HNO₃ 65% conc.) ปริมาตร 200 มล. ลงในใบแก้ว
จากนั้นจะทำการตั้งกรดในตริกซึ่งมีความเป็นกรด 70% (HClO₄ 70% conc.) ปริมาตร 100 มล. แล้วค่อยๆ เทกรด
เบอร์คลอไรกีลงในใบแก้วแล้วปิดให้สนิทแล้วทำการผสมเข้ากัน หนึ่งในสองชั่วโมง

9.1.2 น้ำรีเจนต์ (Water reagent) การเตรียมน้ำรีเจนต์นั้นจะทำการต้มน้ำ
กลับปริมาตร 500 มล. ลงในใบแก้ว จากนั้นจะเปิดกรดในตริกซึ่งมีความเป็นกรด 65% (HNO₃ 65% conc.)
ปริมาตร 1.5 มล. ลงในใบแก้ว ค่อยๆ ให้สารละลายเข้ากับ น้ำรีเจนต์ปริมาตรด้วยน้ำก็กลับปริมาตร
1,000 มล.

9.1.3 สารละลายแคคติมีเนียมมาตรฐาน 10 มก./ล. ในการเตรียมสารละลาย
แคคติมีเนียมมาตรฐาน 10 มก./ล. จะทำการต้มน้ำรีเจนต์ปริมาตร 50 มล. ลงในใบแก้ว จากนั้น
เปิดสารละลายแคคติมีเนียมมาตรฐานเข้ากับน้ำรีเจนต์ปริมาตร 1,000 มล./ล. ปริมาตร 1 มล. ลงในใบแก้ว
ปริมาตรด้วยน้ำรีเจนต์จนครบปริมาตร 100 มล.

9.1.4 สารละลายแคคติมีเนียมมาตรฐาน 0.0, 0.5, 1.0, 1.5, 2.0, 2.5และ 3.0 มก./ล.
ในการเตรียมสารละลายแคคติมีเนียมมาตรฐาน 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล. จะทำการปิ
เปิดสารละลายแคคติมีเนียมมาตรฐานเข้ากับน้ำรีเจนต์ปริมาตร 10 มก./ล. ปริมาตร 0.0, 2.5, 5.0, 7.5, 10.0, 12.5 และ
15.0 มล. ลงในใบแก้วปริมาตรขนาด 50 มล. จากนั้นจะปรับปริมาตรด้วยน้ำรีเจนต์จนครบปริมาตร
50 มล. จะได้สารละลายแคคติมีเนียมมาตรฐานเข้ากับ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล.
ตามลำดับ

9.2 วิธีวิเคราะห์

ในขั้นตอนการวิเคราะห์แคคติมีเนียมในดินนั้นจะทำการนำตัวอย่างที่จะทำการสิ่งให้แห้ง
แล้วนำมาม้วนผ่านตาแหน่งขนาด 0.5 มม. แล้วนำเข้าใน 1.0 ก. ลงในใบแก้ว ทำการต้มกรดผสม
10 มล. สำหรับ Blank ให้ใช้กรดผสมเพียงอย่างเดียว ด้วยน้ำรีเจนต์ 1 คิว จากนั้นทำการตั้งระเบิด
บนเตาให้ความร้อนจนเกิดการสิ้นชีวิต ทำการตั้งระเบิดจนเหลือปริมาตรประมาณ 5 มล. แล้วตั้งที่
ให้ใช้เป็นจึงทำการต้มน้ำรีเจนต์ไปประมาณ 5 มล. จากนั้นให้ปรับปริมาตรด้วยน้ำรีเจนต์จนครบปริมาตร
50 มล. แล้วนำไปวิเคราะห์ตัวอย่างด้วยเครื่อง Atomic Absorption
Spectrophotometer (AAS) (AVANTA, U.K.) และนำคำการดูดกลืนแสงที่ได้มาเทียบกับกราฟของสารเคมีมาตรฐานและนำมาคำนวณตามสมการที่ 17

การค่านวณ

\[
\text{ความเข้มข้นของแต่ละเม็ด (มก./ล.)} = \frac{(A-B) \times V_1}{W}
\]

หมายเหตุ

A คือ ค่าความเข้มข้นของแต่ละเม็ดของตัวอย่างจากการเทียบกับมาตรฐาน
B คือ ค่าความเข้มข้นของแต่ละเม็ดของ Blank จากการเทียบกับกราฟมาตรฐาน
V_1 คือ ปริมาตรสุทธิที่นำไปใช้ในการวิเคราะห์ครั้งนี้
W คือ น้ำหนักของตัวอย่างดังกล่าวที่นำมาบอย

วิธีวิเคราะห์ค่าพารามิเตอร์จากการวิเคราะห์

1. ปริมาณคลอโรฟิลล์

ในการวิเคราะห์ปริมาณคลอโรฟิลล์นั้นจะทำการนำไปใช้สมการดังกล่าว:

\[
\text{ปริมาณคลอโรฟิลล์} = [(12.7 \times D_{663})-(2.69 \times D_{645})] \times V \times \text{Dilution} \\
1,000 \times W
\]

(18)

\[
\text{ปริมาณคลอโรฟิลล์} = [(22.9 \times D_{645})-(4.68 \times D_{663})] \times V \times \text{Dilution} \\
1,000 \times W
\]

(19)

หมายเหตุ
D_{665} คือ ค่าการดูดกลืนแสงที่ 663 นาโนเมตร
D_{645} คือ ค่าการดูดกลืนแสงที่ 645 นาโนเมตร
V คือ ปริมาตรสูตรที่ยกผลิตจากปรับปริมาตรแล้ว
W คือ น้ำหนักของไข่พืชมัก

2. ปรับณาคัดเลือกในที่คู่

2.1 วิธีการเตรียมสารเคมี

2.1.1 ตัดผลิตในคริกและป้องกันรักวิศวิกวิช 2:1 (HNO₃ : HClO₄) ในภาวะเตรียมกระดก
แสนนี้จะทำการตรวจภายในคริกขั้นต่ำ 65% (HNO₃ 65% conc.) ปริมาตร 200 มล. ลงในปิดกั้น
จากนั้นจะทำการปฏิบัติการในคริกขั้นต่ำ 70% (HClO₄ 70% conc.) ปริมาตร 100 มล. แล้วต่ออีก
ครั้งที่ป้องกันรักวิศวิกนั้น ๆ แล้วให้สารละลายกระดกผสมเข้ากัน เทากับใส่ในเซตูเลน

2.1.2 น้ำสีเจาะปุ๋ย (Water reagent) การเตรียมน้ำสีเจาะปุ๋ยนั้นจะทำการตรวจใน
กลับปริมาตร 500 มล. ลงในปิดกั้น จากนั้นป้องกันรักวิศวิกขั้นต่ำ 65% (HNO₃ 65% conc.)
ปริมาตร 1.5 มล. ลงในปิดกั้น คงให้สารละลายขั้นต่ำ จากนั้นปรับปริมาตรด้วยน้ำกลับปริมาตร
1,000 มล.

2.1.3 สารละลายแคสเซเตเคมะรดนูน 10 มก./ล. ในภาวะเตรียมสารละลาย
แคสเซเตเคมะรดนูน 10 มก./ล. จะทำการตรวจน้ำสีเจาะปุ๋ยประมาณ 50 มล. ลงในปิดกั้น จากนั้น
เปิดสารละลายแคสเซเตเคมะรดนูนเข้ากับ 1,000 มก./ล. ปริมาตร 1 มล. ลงในปิดกั้น ปรับ
ปริมาตรด้วยน้ำสีเจาะปุ๋ยกลับปริมาตร 100 มล.

2.1.4 สารละลายแคสเซเตเคมะรดนูน 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล.
ในการเตรียมสารละลายแคสเซเตเคมะรดนูน 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล. จะทำการปิด
สารละลายแคสเซเตเคมะรดนูนเข้ากับ 10 มก./ล. ปริมาตร 0.0, 2.5, 5.0, 7.5, 10.0, 12.5 และ
15 มก. ลงในเซตูเลนปริมาตรขนาด 50 มล. จากนั้นปรับปริมาตรด้วยน้ำสีเจาะปุ๋ยกลับปริมาตร
50 มล. จะได้สารละลายแคสเซเตเคมะรดนูนเข้ากับ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 และ 3.0 มก./ล.
ตามลำดับ

2.2 วิธีวิเคราะห์

ในขั้นตอนการวิเคราะห์ปริมาณแคสเซเตเคมะรดนูนจะน้ำฟิชตัวอย่างมากดัดแปลงในไป
และเราก็ออกจากกันแล้วนำไปให้แห้งที่อุณหภูมิ 90°C เป็นเวลา 24 ชั่วโมง หรือจนกว่าขั้นส่วนพืช
จะแห้ง ทำการบินส่วนของพืชแล้วน้ำนมค้างจำนวน 0.5 g. ลงในปิดกั้น จากนั้นทำการเตรียมกรด
ผสมปริมาตร 5 มล. ลงไปสำหรับ Blank ให้ใช้กระสอบเพียงอย่างเดียว ตั้งหัวไว้ 1 คืน จากนั้นทำการตั้งระดับน้ำให้ความร้อนบนกิดกว้างสีขาว แล้วตั้งระดับต่อจนเหนือปริมาตรประมาณ 5 มล. จากนั้นตั้งไว้ให้เย็นแล้วทำการดึงน้ำกลืนลงไปประมาณ 5 มล. แล้วนำไปปรับปริมาตรด้วยน้ำเรือนเจนต่ำจนครบปริมาตร 50 มล. นำไปวัดค่าการดูดกลืนแสงด้วยเครื่อง Absorption Spectrophotometer (AAS) (AVANTA, U.K.) นำค่าการดูดกลืนแสงที่เดิมมาเทียบกับกราฟของสารเคมีมาตรฐานและคำนวณค่าความเข้มข้นตามสมการที่ 20

\[
\text{ความเข้มข้นของแคดเมียม (มก./ลบม.)} = \frac{(A-B) \times V_1}{W}
\]

หมายเหตุ

A คือ ค่าความเข้มข้นของแคดเมียมของตัวอย่างจากการเทียบกับกราฟมาตรฐาน
B คือ ค่าความเข้มข้นของแคดเมียมของ Blank จากการเทียบกับกราฟมาตรฐาน
V_1 คือ ปริมาตรสุดท้ายของตัวอย่างหลังจากปรับปริมาตรแล้ว
W คือ น้ำหนักของเพียงตัวอย่างหลังจากนำไปมาย่อย
ภาคผนวก ข
การแปลผลคุณสมบัติทางเคมีและภำยพลของดิน
ตารางแม่ที่ 1 การประเมินระดับความเป็นกรด-ด่าง (pH)

<table>
<thead>
<tr>
<th>ระดับความเป็นกรด – ด่าง (rating)</th>
<th>ช่วง pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>กรดรุงแรงมากที่สุด (Ultra acid)</td>
<td>< 3.5</td>
</tr>
<tr>
<td>กรดรุ้งแรงมาก (Extremely acid)</td>
<td>3.5 – 4.4</td>
</tr>
<tr>
<td>กรดจัดมาก (Very strongly acid)</td>
<td>4.5 - 5.0</td>
</tr>
<tr>
<td>กรดจัด (Strongly acid)</td>
<td>5.1 – 5.5</td>
</tr>
<tr>
<td>กรดปรกติกลาง (Moderately acid)</td>
<td>5.6 – 6.0</td>
</tr>
<tr>
<td>กรดเล็กน้อย (Slightly acid)</td>
<td>6.1 – 6.5</td>
</tr>
<tr>
<td>เป็นกลาง (Neutral)</td>
<td>6.6 – 7.3</td>
</tr>
<tr>
<td>ด่างอ่อน (Slightly alkaline)</td>
<td>7.4 – 7.8</td>
</tr>
<tr>
<td>ด่างปรกติกลาง (Moderately alkaline)</td>
<td>7.9 – 8.4</td>
</tr>
<tr>
<td>ด่างจัด (Strongly alkaline)</td>
<td>8.5 – 9.0</td>
</tr>
<tr>
<td>ด่างจัดมาก (Very strongly alkaline)</td>
<td>> 9.0</td>
</tr>
</tbody>
</table>

ที่มา: คณะ-analytics วิชาการปฏิบัติการ (2548)
ตารางแนวที่ 2 การประเมินสมบัติทางเคมีของดิน

<table>
<thead>
<tr>
<th>รายการ (rating)</th>
<th>ต่ำมาก</th>
<th>ต่ำ</th>
<th>ปานกลาง</th>
<th>สูง</th>
<th>สูงมาก</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. อินทรีย์คาร์บอน, % (OC)</td>
<td>< 2</td>
<td>2 - 4</td>
<td>4 - 10</td>
<td>10 - 20</td>
<td>> 20</td>
</tr>
<tr>
<td>2. อินทรีย์วัตถุ, % (OM)</td>
<td>< 0.5</td>
<td>0.5 - 1.5</td>
<td>1.5 - 2.5</td>
<td>2.5 - 4.5</td>
<td>> 4.5</td>
</tr>
<tr>
<td>3. ไนโตรเจน, % (N)</td>
<td>< 0.02</td>
<td>0.02-0.08</td>
<td>0.08-0.12</td>
<td>0.12-0.18</td>
<td>> 0.18</td>
</tr>
<tr>
<td>4. อัตราส่วน C : N, %</td>
<td>< 10</td>
<td>10 - 12</td>
<td>12 - 16</td>
<td>16 - 24</td>
<td>> 24</td>
</tr>
<tr>
<td>5. พลังฟอร์มซัลทีเป็นประปิอิณ์ (P; mg P/kg)</td>
<td>< 3</td>
<td>3 - 10</td>
<td>10 - 15</td>
<td>15 - 45</td>
<td>> 45</td>
</tr>
<tr>
<td>6. เกทอิออนที่แคลริฟิเคชั่น (CEC; meq/ 100g)</td>
<td>< 10</td>
<td>10 - 15</td>
<td>15 - 25</td>
<td>25 - 40</td>
<td>> 40</td>
</tr>
</tbody>
</table>

ที่มา: สุมาลักษณ์ (2554)
ภาพนูนภที่ 1 ตารางสุ่ม.setFocusแสดงชิปของเนื้อทิน
ภาคผนวก ก
ประวัตินักศึกษา
ประวัตินักศึกษา

ชื่อ-นามสกุล นางสาวมัณฑนา คำนิงคำยุย
เกิดเมื่อ 2 เมษายน 2532
ประวัติการศึกษา
พ.ศ.2544-2549 มัธยมศึกษาตอนต้นและมัธยมศึกษาตอนปลาย โรงเรียนสวนคองนันทวิทยา จังหวัดสุริยะราษฎร์
พ.ศ.2550-2554 ปริญญาตรี สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้ จังหวัดเชียงใหม่
อิมเมล mintra.khum@gmail.com