

ชื่อเรื่อง	สมรรถนะทางความร้อนของกระชังเลี้ยงปลาเรือนกระจกร่วมกับการเติมอากาศร้อน
ชื่อผู้เขียน	ว่าที่ร้อยตรี ปิยะพงษ์ ยงเพชร
ชื่อปริญญา	วิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมพลังงานทดแทน
อาจารย์ที่ปรึกษาหลัก	ผู้ช่วยศาสตราจารย์ ดร.ณัฐรุณิ ดุษฎี

บทคัดย่อ

ปลาเป็นสัตว์น้ำเศรษฐกิจที่สำคัญของประเทศไทย และเป็นแหล่งโปรตีนที่สำคัญของคนไทย เป็นอุตสาหกรรมที่มีการเจริญเติบโตอย่างรวดเร็วและเป็นแหล่งอาหารที่มีขนาดใหญ่และส่วนใหญ่มีแหล่งการผลิตอยู่ในทวีปเอเชีย ประเทศไทยมีสติภาพส่งออกสัตว์น้ำติดอันดับ 1 ใน 10 จากทุกประเทศทั่วโลก แต่ทั้งนี้ก็ยังมีปัญหาของการเลี้ยงปลาในช่วงฤดูฝนและฤดูหนาว ที่ส่งผลกระทบต่อเกษตรกร งานวิจัยนี้เป็นการศึกษาสมรรถนะทางความร้อนของกระชังเลี้ยงปลาเรือนกระจกร่วมกับการเติมอากาศร้อนและไม่เติมอากาศร้อนเปรียบเทียบกับกระชังเลี้ยงปลาแบบทั่วไปของเกษตรกร รวมทั้งมีการพัฒนาแบบจำลองทางคณิตศาสตร์สำหรับคำนวณอุณหภูมิน้ำในกระชังเลี้ยงปลาที่มีการเติมอากาศร้อนและไม่มีการเติมอากาศร้อน และมีการประเมินความคุ้มค่าทางเศรษฐศาสตร์ของระบบกระชังเลี้ยงปลาเรือนกระจกร่วมกับการเติมอากาศร้อน

ซึ่งในงานวิจัยได้ออกแบบและพัฒนาระบบกระชังเลี้ยงปลาที่มีจำนวนกันการสูญเสียความร้อนสูญญานอกขนาด $2.1 \times 3.2 \times 1.5 \text{ m}^3$ โรงเรือนพลาสติกโครงรูปพาราโบลาปิดคลุมรอบด้านด้วยแผ่นโพลีเอทิลีน (0.15 mm, UV 7%) โดยทำการทดสอบเลี้ยงปลา 2 ชนิด ได้แก่ ปลาหม้อไทยและปลาทับทิมในสระน้ำเพื่อการเกษตร ($18^\circ 53' 24' \text{ N}$ $99^\circ 2' 16' \text{ E}$) ในช่วงฤดูฝนและฤดูหนาวซึ่งมีอุณหภูมิแวดล้อมต่ำ ส่งผลต่อการเจริญเติบโตของปลา ผลจากการศึกษาในครั้งนี้ แบ่งออกเป็น 5 ส่วน ได้แก่

ส่วนที่ 1 จากการทดสอบเลี้ยงปลาในกระชังเลี้ยงปลาที่สภาพแตกต่างกันทั้ง 3 ชุดการทดลอง ทำการวัดเปรียบเทียบอุณหภูมิน้ำในกระชังเลี้ยงปลา มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$) พบว่าการการเลี้ยงปลาในกระชังเลี้ยงปลาเรือนกระจกหุ้มฉนวนลดการสูญเสียความร้อนสูญญานอกด้วยโพลีเอทิลีนที่หุ้มด้วยไม้ไผ่มีอุณหภูมิน้ำในกระชังเลี้ยงปลาเฉลี่ย $30.24 \pm 0.68^\circ \text{C}$ และ $27.58 \pm 0.81^\circ \text{C}$ ทดสอบในช่วงฤดูฝนหนาว ตามลำดับ ซึ่งมีอุณหภูมิสูงกว่าการเลี้ยงปลาในกระชังแบบปกติเท่ากับ 1.23°C คิดเป็น 4.09% และ 0.81°C คิดเป็น 2.99% ตามลำดับ

ส่วนที่ 2 การศึกษาสมรรถนะของกระชังเลี้ยงปลาเรือนกระจากร่วมกับการเติมอากาศร้อน พบว่าที่ระดับความลึกจากผิวน้ำ 0.8 m เปรียบเทียบกระชังเลี้ยงปลาเรือนกระจากรที่ไม่เติมอากาศร้อน และเติมอากาศร้อนมีประสิทธิภาพของระบบเฉลี่ย 23.66% และ 32.65% ตามลำดับ น้ำในกระชัง เลี้ยงปลา มีอุณหภูมิเฉลี่ย 29.94 ± 0.23 °C และ 31.82 ± 0.68 °C ตามลำดับ สำหรับการเติมอากาศ ร้อนภายในกระชังเลี้ยงปลาเรือนกระจากรส่งผลให้อุณหภูมน้ำมีความสม่ำเสมอในทุกระดับชั้นความลึก มี ความแตกต่างระหว่างอุณหภูมน้ำสูงสุดและต่ำสุด 1.57 °C และมีอุณหภูมิที่เหมาะสมในการเลี้ยงปลา

ส่วนที่ 3 การเปรียบเทียบอัตราการเจริญเติบโตและคุณภาพด้านโภชนาการของปลาที่เลี้ยง ในกระชังเลี้ยงปลาเรือนกระจากร การทดสอบเลี้ยงปลาหม้อไทยในถุงฟอน พบว่าปลาที่เลี้ยงในกระชังที่มี ฉนวนกันการสูญเสียความร้อนและการเติมอากาศร้อนมีอัตราการเจริญเติบโตสูงกว่าปลาที่เลี้ยงใน กระชังทั่วไป และกระชังเลี้ยงปลาแบบทั่วไปที่ถูกคลุมด้วยโรงเรือนมีการเจริญเติบโตแตกต่างกันอย่าง มีนัยสำคัญทางสถิติ ($p<0.05$) เท่ากับ 15.93%, 6.24% ตามลำดับ สำหรับปลาทับทิมที่เลี้ยงในถุง หน้า พบว่าปลาที่เลี้ยงในกระชังที่มีฉนวนกันการสูญเสียความร้อนและการเติมอากาศมีอัตราการ เจริญเติบโตสูงกว่าปลาที่เลี้ยงในกระชังทั่วไป และกระชังเลี้ยงปลาแบบทั่วไปที่ถูกคลุมด้วยโรงเรือนมี การเจริญเติบโตและอัตราการแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p<0.05$) เท่ากับ 30.91%, 11.79% ตามลำดับ นอกจากนี้ยังพบอีกว่าระบบโรงเรือนกระชังเลี้ยงปลาแสงอาทิตย์ที่พัฒนาสามารถ เลี้ยงปลาได้ 3 รอบ/ปี ในขณะที่กระชังเลี้ยงปลาทั่วไปของเกษตรกรเลี้ยงได้เพียง 2 รอบ/ปี ทั้งนี้ คุณสมบัติของน้ำและคุณภาพด้านโภชนาการไม่มีความแตกต่างกับกระชังเลี้ยงปลาทั่วไป

ส่วนที่ 4 การพัฒนาแบบจำลองทางคณิตศาสตร์สำหรับคำนวณอุณหภูมน้ำในระบบกระชัง เลี้ยงปลาในเรือนกระจากรที่มีการเติมอากาศร้อนและไม่เติมอากาศร้อน จากแบบจำลองที่พัฒนาใน งานวิจัยนี้ พบว่าสามารถใช้คำนวณอุณหภูมน้ำในระบบกระชังเลี้ยงปลา โดยค่าอุณหภูมน้ำที่คำนวณได้ มีค่าความคลาดเคลื่อนจากการทดลองไม่เกิน 5% ทั้ง 2 ระบบ

ส่วนที่ 5 จากการวิเคราะห์ทางเศรษฐศาสตร์ พบว่าโรงเรือนที่พัฒนามีการลงทุนประมาณ 10,400 บาท และมีการวิเคราะห์จุดคุ้มทุนพบว่ามีระยะเวลาคืนทุนอยู่ที่ 1 ปี 7 เดือน 14 วัน มีอัตรา ผลตอบแทนของระบบ (IRR) เท่ากับ 56.99% สรุปได้ว่าการลงทุนสร้างกระชังเลี้ยงปลาเรือนกระจากร ผลตอบแทนของระบบน่าลงทุน

จากการวิจัยสามารถสรุปได้ว่า ระบบกระชังเลี้ยงปลาโรงเรือนแสงอาทิตย์รวมกับการเติม อากาศ มีค่าสมรรถนะและผลตอบแทนทางเศรษฐกิจสูงกว่าระบบการเลี้ยงปลาในกระชังเลี้ยงปลา ของเกษตรกรทั่วไป มีความเหมาะสมที่จะส่งเสริมการใช้งานและถ่ายทอดเทคโนโลยีให้กับเกษตรกร ต่อไป

Title	Thermal Performance of Greenhouse Fish Cages Integrated with Hot Air Aerator
Author	Acting Sub Lt. Piyaphong Yongphet
Degree of	Master of Engineering in Renewable Energy
Advisory Committee Chairperson	Assistant Professor Dr. Natthawud Dussadee

ABSTRACT

Aquatic animals, particularly fish, play a main role in the life and livelihoods of the people in Thailand, especially living in rural areas for whom fish is a staple of their diet and the chief source of animal protein. Aquaculture is the fastest growing food production industry, and the vast majority of aquaculture products are derived from Asia. Thailand's statistics stated that aquatic exports ranked 1st in 10 countries all over the world. However, there are culturing fish problems during the rainy and winter seasons that impact farmers daily life. This study was analyzing thermal performance of greenhouse fish cage integrated with (1) hot air aerator and (2) without hot air aerator compared to normal fish cage, as well as the development of a mathematical model for predicting water temperature in greenhouse fish cages and assessing the economic value.

In this research, foam was used in the design and development of fish cage size $2.1 \times 3.2 \times 1.5 \text{ m}^3$ and covered with bamboo to reduce heat loss. The parabolic roof structure which was made from poly ethylene (0.15 mm, UV 7%). Culturing 2 species of fish include Climbing perch (*Climbing Perch, Anabastestudineus, Bloch*) and Nile tilapia (*Oreochromis niloticus-mossambicus*) in a lagoon ($18^\circ 53' 24'' \text{ N}$ $99^\circ 2' 16'' \text{ E}$). During the rainy and winter season with low ambient temperature affected the growth of fish. The study results were divided into 5 parts, included.

Part 1: Test for culturing fish cage under 3 different sets of experiments. Comparing with the measured water temperature was significantly different among the treatments ($p<0.05$). From the experimental study greenhouse fish cages using foam and covered with bamboo have average water temperature of $30.24 \pm 0.68^\circ \text{C}$ and $27.58 \pm 0.81^\circ \text{C}$ that tested during the rainy and winter season, respectively; this temperature is higher than during normal fish farming being equal to 1.23°C or 4.09% and 0.81°C or 2.99%, respectively.

Part 2: Study of performance focused on greenhouse fish cage integrated with hot air aerator and without hot air aerator. The depth of the water surface 0.8 m it was found that performance of greenhouse fish cages were 23.66% and 32.65%, respectively. Average water temperature was 29.94 ± 0.23 °C and 31.82 ± 0.68 °C, respectively. Filling hot air into greenhouse fish cages revealed that the water temperature is consistently at each level of the depth. The difference between the maximum and minimum temperature was 1.57 °C. The temperature was optimized for culturing the fishes.

Part 3: The study was to compare growth rates and nutritional quality in culturing fish cage. Culturing Climbing perch during the raining season it was found that greenhouse fish cages using foam and covered with bamboo system showed the growth rates was higher than normal fish cage and fish cage covered with greenhouse ($p < 0.05$) was 15.93% and 6.24%, respectively. Culturing Nile tilapia during winter season it was found that greenhouse fish cage using foam and covered with bamboo shown growth rates higher than normal fish cage and the cage covered up with greenhouse ($p < 0.05$) was 30.91% and 11.79%, respectively. It also found that greenhouse fish cages using foam and covered with bamboo can produce fish cultures 3 times/yearly. In contrast, normal fish cages can culture fish 2 times/year. Water quality and nutrition showed that there is no difference compared to normal fish cage.

Part 4: Development to a mathematical model used for predicting the water temperature in greenhouse fish cages integrated with hot air aerator and without hot air aerator. The model was developed for this experimental study. It can be used to predict the water temperature for the fish cages. The predicted water temperature error presented not is more than 5%.

Part 5: The economic cost analysis was examined. The greenhouse fish cage was developed with an investment of 10,400 baht. It was found that the payback period was 1 year 7 months and 14 days; and the internal rate of return (IRR) was 58.00%. Accordingly, the return on investment in greenhouse fish cages verified the investment attractiveness.

The research concluded that culturing fish in greenhouse fish cages integrated with hot air aerator provided the best performance and most economical benefits compared with culturing fish in normal fish cage. Consequently, the entire study results deliveries detailed information and promotes the transfer of technology and knowledge to the farmers and efficiently applicable for the society.