

ชื่อเรื่อง	การพัฒนาเครื่องหมายโมเลกุลที่ยึดติดกับ QTLs ที่ควบคุมให้ข้าวมีอายุวันออกดอกสั้น
ชื่อผู้เขียน	นายสุเทพ วัชรเวชศรุตการ
ชื่อปริญญา	ปรัชญาดุษฎีบัณฑิต สาขาวิชาพันธุศาสตร์
ประธานกรรมการที่ปรึกษา	ผู้ช่วยศาสตราจารย์ ดร.วราภรณ์ แสงทอง

บทคัดย่อ

อายุวันออกดอกเป็นลักษณะทางการเกษตรที่สำคัญ ในข้าวแต่ละพันธุ์มีอายุวันออกดอกที่แตกต่างกันทำให้สามารถปรับตัวปลูกได้ในพื้นที่ต่างๆ ที่มีคุณภาพที่แตกต่างกัน และอายุวันออกดอกของข้าวที่ต่างกันมีผลอย่างมากต่อผลผลิตข้าว การทดลองนี้มีวัตถุประสงค์เพื่อหาเครื่องหมายโมเลกุลที่อยู่ใกล้ หรือยึดติดกับ QTLs ที่ควบคุมอายุวันออกดอกสั้น (early heading date) ของประชากร BC_4F_2 , BC_4F_3 และ BC_5F_2 ซึ่งมีข้าวเหนียวไวต่อช่วงแสงพันธุ์ กข6 เป็นพันธุ์รับ (recurrent parent) และข้าวเจ้าไม่ไวต่อช่วงแสงพันธุ์ Taichung 65 เป็นพันธุ์ให้ (donor parent) รวมทั้งทำการทดสอบผลผลิตเบื้องต้นของสายพันธุ์ข้าวเหนียว กข6 ไม่ไวต่อช่วงแสงที่มีอยู่ในประเทศไทยของ QTLs ที่ควบคุมอายุวันออกดอกสั้นแบบต่างๆ เมื่อทำการวิเคราะห์หาความสัมพันธ์ระหว่างเครื่องหมายโมเลกุลกับอายุวันออกดอกสั้นในประชากร BC_4F_2 ที่ปลูกในฤดูนาปรัง 2554 ด้วยวิธี Single-Factor Analysis of Variance พบเครื่องหมายโมเลกุลที่มีความความสัมพันธ์กับอายุวันออกดอกสั้น จำนวน 6 ตำแหน่ง จำนวนนี้ทำการวิเคราะห์หาค่าสมการถดถอยหลายตำแหน่งด้วยวิธี multiple regression ในประชากรตั้งกล่าว พบเครื่องหมายโมเลกุลที่มีความสัมพันธ์กับอายุวันออกดอกสั้นมากที่สุด 3 ตำแหน่ง คือ $er2$ marker, $er3$ marker และ $hd1$ marker และมีค่า partial R-square เท่ากับ 0.392, 0.1464 และ 0.0316 ตามลำดับ เมื่อทำการวิเคราะห์หาความสัมพันธ์ระหว่างเครื่องหมายโมเลกุลกับอายุวันออกดอกสั้นในประชากร BC_4F_3 ที่ปลูกในฤดูนาปี 2554 ด้วยวิธี Single-Factor Analysis of Variance พบเครื่องหมายโมเลกุลจำนวน 5 ตำแหน่ง ซึ่งมีความสัมพันธ์กับอายุวันออกดอกสั้น จำนวนนี้ทำการวิเคราะห์หาค่าสมการถดถอยหลายตำแหน่งด้วยวิธี multiple regression ในประชากรตั้งกล่าว พบเครื่องหมายโมเลกุลที่มีความสัมพันธ์กับอายุวันออกดอกสั้นมากที่สุด จำนวน 2 ตำแหน่ง คือ $hd2$ marker และ $hd1$ marker ซึ่งมีค่า partial R-square เท่ากับ 0.1449 และ 0.0707 ตามลำดับ เมื่อทำการวิเคราะห์หาความสัมพันธ์ระหว่างเครื่องหมายโมเลกุลกับอายุวันออกดอกสั้นในประชากร BC_5F_2 ที่ปลูกในฤดูนาปรัง 2555 ด้วยวิธี Single-Factor Analysis of Variance พบเครื่องหมายโมเลกุลจำนวน 11 ตำแหน่งมีความสัมพันธ์กับอายุวันออกดอกสั้น จำนวนนี้ทำการ

วิเคราะห์หาค่าสมการผลถอยหลังตำแหน่งด้วยวิธี multiple regression ในประชากรตั้งกล่าว พบรเครื่องหมายโมเลกุลที่มีความสัมพันธ์กับอายุวันออกดอกออกสั้นมากที่สุด จำนวน 3 ตำแหน่ง คือ er3 marker, hd1 marker และ hd2 marker และมีค่า partial R-square เท่ากับ 0.1410, 0.0891 และ 0.0611 ตามลำดับ ดังนั้นเครื่องหมายโมเลกุล hd1 marker มีความสัมพันธ์กับอายุวันออกดอกออกสั้นในประชากรตัวอย่างที่ทำการศึกษาทั้ง 3 ฤดู ส่วนเครื่องหมายโมเลกุล er3 marker มีความสัมพันธ์กับอายุวันออกดอกออกสั้นในฤดูนาปรัง 2554 และ 2555 ในขณะที่ hd2 marker มีความสัมพันธ์กับอายุวันออกดอกออกสั้นในฤดูนาปี 2554 และนาปรัง 2555 ส่วน er2 marker มีความสัมพันธ์กับอายุวันออกดอกออกสั้นในฤดูนาปรัง 2554 การทดสอบผลผลิตเบื้องต้นของสายพันธุ์ข้าวเหนียว กข6 ไม่ไวต่อช่วงแสงที่มีอยู่ในไทยเป็นแบบต่างๆ ของ QTLs ที่ควบคุมอายุวันออกดอกออกสั้นในฤดูนาปรัง 2556 เมื่อเปรียบเทียบลักษณะต่างๆ ที่มีความแตกต่างทางสถิติตัวบ่งชี้ DMRT (Duncan's new multiple range test) ภายในกลุ่มของสายพันธุ์ข้าวเหนียว กข6 ไม่ไวต่อช่วงแสงจำนวน 13 สายพันธุ์ พบว่า อายุวันออกดอกของสายพันธุ์ข้าวเหนียว กข6 ไม่ไวต่อช่วงแสงที่มีอยู่ในไทยเป็น hd1hd1 hd2hd2 er2er2 er3er3 se5se5 จำนวน 7 สายพันธุ์ คือ entry 8, 9, 10, 11, 12, 13 และ 14 มีอายุวันออกดอกเท่ากับ 93, 92, 99, 92, 93, 93 และ 91 วันตามลำดับ ซึ่งจัดเป็นข้าวมีอายุวันออกดอกสั้นมาก ส่วน entry 4 และ 5 ซึ่งมีอยู่ในไทยเป็น hd1hd1 er2er2 รวมทั้ง entry 6 และ 7 ซึ่งมีอยู่ในไทยเป็น hd1hd1 er3er3 มีอายุวันออกดอกเท่ากับ 108, 108, 105 และ 109 วันตามลำดับ ซึ่งจัดเป็นข้าวมีอายุวันออกดอกสั้น โดยที่สายพันธุ์ทั้งหมดที่กล่าวมาแล้วมีอายุวันออกดอกแตกต่างทางสถิติอย่างมีนัยสำคัญยิ่งกับสายพันธุ์ข้าวเหนียว กข6 ไม่ไวต่อช่วงแสง entry 2 และ 3 ที่มีอยู่ในไทยเป็น hd1hd1 ซึ่งมีอายุวันออกดอกมากสุดเท่ากันคือ 119 วันซึ่งจัดเป็นข้าวมีอายุวันออกดอกปานกลาง ส่วนผลผลิตต่อไร่ของสายพันธุ์ข้าวเหนียว กข6 ไม่ไวต่อช่วงแสง entry 5 ซึ่งมีอยู่ในไทยเป็น hd1hd1 er2er2 มีผลผลิตต่อไร่สูงสุดเท่ากับ 1,069 กิโลกรัม/ไร่ แต่ไม่แตกต่างจากผลผลิตของ entry 4 ที่มีอยู่ในไทยเป็นกัน และ 6 ซึ่งมีอยู่ในไทยเป็น hd1hd1 er3er3 มีค่าเท่ากับ 1,005 และ 857 กิโลกรัมต่อไร่ นอกจากนี้ยังพบว่า entry ที่ 2, 3, 7, 8, 9, 10, 11, 12, 13 และ 14 มีผลผลิตต่อไร่ไม่แตกต่างกันซึ่งมีค่าระหว่าง 531 - 794 กิโลกรัมต่อไร่

คำสำคัญ : ข้าว, กข6, ไม่ไวต่อช่วงแสง, อายุวันออกดอกออกสั้น

Title	Development of Molecular Markers Linked to Quantitative Trait Loci to Control Early Heading Date in Rice
Author	Mr. Suthep Watcharawetsaringkharn
Degree of	Doctor of Philosophy in Genetics
Advisory Committee Chairperson	Assistant Professor Dr. Varaporn Sangtong

ABSTRACT

Heading date is an important trait in agriculture. In rice, each variety has different heading date that allows planting adaptation in rice production areas with varying seasons and heading date that affect rice yield. The objective of this experiment was to identify molecular markers that are found nearby or linked to the QTLs that control the trait of early heading date for the populations of BC_4F_2 , BC_4F_3 and BC_5F_2 consisting of photoperiodic sensitive glutinous RD6 rice variety which was used as recurrent parent together with photoperiodic non-sensitive non-glutinous Taichung 65 rice variety as donor parent, and also to test the preliminary yield trial of the photoperiodic non-sensitive glutinous rice RD6 lines with various genotypes of QTLs that control the early heading date trait. In this study, analysis of the relationship between molecular markers with early heading dates in the BC_4F_2 population planted in off-season 2011 by using the Single-Factor Analysis of Variance. Results showed that molecular markers related to early heading date trait were found in 6 positions. In addition, analysis of regression coefficient for various loci by using multiple regression method in that population, showed molecular markers which were highly linked with early heading date in 3 positions: *er2* marker, *er3* marker and *hd1* marker and having partial R-square values of 0.392, 0.1464 and 0.0316, respectively. Meanwhile, analysis of the relationship between molecular markers with early heading date in the BC_4F_3 population planted in the rainy season 2011 by using Single-Factor Analysis of Variance, showed molecular markers linked with early heading date in 5 positions. Succeeding analysis of regression coefficient

by using multiple regression method for that population, found molecular markers correlated with that trait in 2 positions, *hd2* marker and *hd1* marker with partial R-square values of 0.1449 and 0.0707, respectively. Likewise, analysis of the relationship between molecular markers linked to early heading trait of the population BC₅F₂ planted in off-season 2012 by using Single-Factor Analysis of Variance, showed molecular markers in 11 positions which were related with early heading trait. Results of the analysis of regression coefficient of the different loci in a multiple regression method of that population, showed that molecular markers which were most highly related to early heading date trait in rice were in 3 positions, namely: *er3* marker, *hd1* marker and *hd2* marker and partial R-square values equivalent to 0.1410, 0.0891 and 0.0611, respectively. Therefore, the molecular marker, *hd1*, was found consistently to have relationship with early heading date trait in the sample rice population planted in 3 seasons. As for the molecular marker, *er3* marker, it was found to be correlated to early heading date trait during the off-seasons 2011 and 2012 while *hd2* marker had the same relationship in rice planted during the rainy season 2011 and off-season 2012. For *er2* marker, the relationship with the early heading trait occurred during the off-season 2011. Preliminary yield trial of the photoperiodic non-sensitive glutinous RD6 rice with various genotypes of QTLs that control the early heading date trait was conducted in off-season 2013. Comparison among various heading date traits showed statistical difference by using DMRT (Duncan's new multiple range test) within the group of the photoperiodic non-sensitive glutinous RD6 in 13 lines, showed that these plants with genotypes of *hd1hd1* *hd2hd2* *er2er2* *er3er3* *se5se5* in 7 lines of entry 8, 9, 10, 11, 12, 13 and 14 having heading dates of 93, 92, 99, 92, 93, 93 and 91 days, respectively, were considered to have extremely early heading dates. Entries 4 and 5 with genotypes of *hd1hd1* *er2er2* together with entry 6 and 7 having genotype of *hd1hd1* *er3er3* and heading dates of 108, 108, 105 and 109 days, respectively, were considered rice plants with early heading dates. With all the lines mentioned having highly significant but varying heading dates from photoperiodic non-sensitive glutinous RD6, entries 2 and 3 with genotypes of *hd1hd1*, had similar heading date of 119 days, considered a

moderate heading date. For yield per rai, the photoperiodic non-sensitive glutinous RD6 line of entry 5 with genotype of *hd1hd1 er2er2* gave the highest yield of 1,069 kg/rai but was not different from entry 4 with similar genotype and entry 6 with genotype *hd1hd1 er3er3* whose yields were 1,005 and 857 kg/rai, respectively. Besides, it was also found that yields of entry 2, 3, 7, 8, 9, 10, 11, 12, 13 and 14 were non-significant, ranging from 531-794 kg/rai.

Keyword : rice, RD6, photoperiod-insensitive, early heading date