

ชื่อเรื่อง	การพัฒนาและการใช้เครื่องหมายโมเลกุลที่ควบคุมยืนความหอมในถั่วเหลืองฝักสด
ชื่อผู้เขียน	นางสาวสุวรรณี ปาลี
ชื่อปริญญา	วิทยาศาสตรมหาบัณฑิต สาขาวิชาพิชสวน
อาจารย์ที่ปรึกษาหลัก	อาจารย์ ดร.พรพันธ์ ภู่พร้อมพันธุ์

บทคัดย่อ

กลิ่นหอมเป็นลักษณะที่มีความสำคัญของถั่วเหลืองฝักสดทำให้สามารถเพิ่มมูลค่าทางการตลาดได้ ยืน *BADH2* ควบคุมความหอม ซึ่งในถั่วเหลืองฝักสดพันธุ์หอมไม่มีเอนไซม์ *BADH2* เนื่องจากเกิดการกลายของยืน *BADH2* ทำให้เอนไซม์ที่สังเคราะห์ขึ้นไม่สมบูรณ์ ไม่สามารถเปลี่ยนสาร *gamma-aminobutyraldehyde* (GABald) เป็นสาร *gamma-aminobutyric acid* (GABA) ได้ แต่สารดังกล่าวจะถูกเปลี่ยนเป็นสาร 1-pyrroline และเปลี่ยนเป็นสาร 2-acetyl-1-pyrroline (2AP) ซึ่งทำให้มีกลิ่นหอม งานวิจัยครั้นนี้มีวัตถุประสงค์เพื่อพัฒนาเครื่องหมายดีเอ็นเอแบบ allele specific marker ให้เฉพาะเจาะจงกับยืน *BADH2* จากการวิเคราะห์ลำดับนิวคลีโอไทด์ของยืน *BADH2* พบว่าพันธุ์ Kaori เกิดการกลายแบบขาดหายไป (deletion) จำนวน 2 นิวคลีโอไทด์ คือ TT ใน exon 10 และการเปรียบเทียบลำดับกรดอะมิโนในยืน *BADH2* พบว่า พันธุ์ Kaori โคดอนเปลี่ยนจาก TTT เป็น TGA จึงทำให้กรดอะมิโนเปลี่ยนจาก phenylalanine เป็น stop codon ทำให้มีกลิ่นหอม การออกแบบและทดสอบเครื่องหมายดีเอ็นเอ แบบ allele specific marker พบว่า ปฏิกิริยาพีซีอาร์ สกาวาที่เหมาะสม ที่อุณหภูมิ annealing เท่ากับ 62 องศาเซลเซียส และความเข้มข้นของไพรเมอร์ outer-F, inner-F, inner-R และ outer-R เท่ากับ 0.25, 0.4, 0.1, และ 0.25 ไมโครโมลาร์ ตามลำดับ ทำให้ปรากฏผลดีเอ็นเอได้ชัดเจน และได้นำมาทดสอบกับประชากรช่วงอายุที่ 2 ที่มีการกระจายตัวของยืนความหอม สามารถตรวจสอบต้นถั่วเหลืองฝักสดที่หอม ไม่หอม และยืนที่อยู่ในสภาพເຫດໄວ ไซกัสได้อย่างมีประสิทธิภาพ

Title	Development and Application of Allele Specific Marker to <i>BADH2</i> Gene in Vegetable Soybean
Author	Miss Suwannee Palee
Degree of	Master of Science in Horticulture
Advisory Committee Chairperson	Dr. Pornpan Pooprompan

ABSTRACT

Aroma is an important trait which can increase marketable value of vegetable soybean. This trait is controlled by betaine aldehyde dehydrogenase 2 (*BADH2*) gene where in fresh aromatic soybean variety, there is no enzyme *BADH2* since mutation in *BADH2* gene inhibits complete synthesis of enzyme thus it is not able to convert gamma-aminobutyraldehyde (GABald) to gamma amino butyric acid (GABA). But this substance can be converted to both 1-pyrroline and 2-acetyl-1-pyrroline (2AP) which are responsible for aroma in vegetable soybean. The objective of this research was to develop an allele specific marker to identify *BADH2* mutant allele. Analysis of *BADH2* nucleotide sequence found that in Kaori variety, there was a deletion of 2 bp in TT in exon 10 and comparison of amino acid sequence in *BADH2* gene, which showed that in Kaori variety, codon was changed from TTT to TGA thus changing amino acid from phenylalanine to TGA, a stop codon causing aroma. The design and testing of allele specific marker showed that polymerase chain reaction (PCR) analysis indicated optimum conditions consisting of annealing temperature at 62 °C and optimum primer concentrations of outer-F, inner-F, inner-R and outer-R at 0.25 µM, 0.4 µM, 0.1 µM, and 0.25 µM, respectively, thus resulting to clear DNA bands which were then used to effectively identify the aromatic, non-aromatic and heterozygous genotypes of individuals in an *F₂* population.